A CaVβ SH3/Guanylate Kinase Domain Interaction Regulates Multiple Properties of Voltage-gated Ca2+ Channels

Auxiliary Ca2+ channel β subunits (CaVβ) regulate cellular Ca2+ signaling by trafficking pore-forming α1 subunits to the membrane and normalizing channel gating. These effects are mediated through a characteristic src homology 3/guanylate kinase (SH3–GK) structural module, a design feature shared in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of general physiology 2005-10, Vol.126 (4), p.365-377
Hauptverfasser: Takahashi, Shoji X., Miriyala, Jayalakshmi, Tay, Lai Hock, Yue, David T., Colecraft, Henry M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 377
container_issue 4
container_start_page 365
container_title The Journal of general physiology
container_volume 126
creator Takahashi, Shoji X.
Miriyala, Jayalakshmi
Tay, Lai Hock
Yue, David T.
Colecraft, Henry M.
description Auxiliary Ca2+ channel β subunits (CaVβ) regulate cellular Ca2+ signaling by trafficking pore-forming α1 subunits to the membrane and normalizing channel gating. These effects are mediated through a characteristic src homology 3/guanylate kinase (SH3–GK) structural module, a design feature shared in common with the membrane-associated guanylate kinase (MAGUK) family of scaffold proteins. However, the mechanisms by which the CaVβ SH3–GK module regulates multiple Ca2+ channel functions are not well understood. Here, using a split-domain approach, we investigated the role of the interrelationship between CaVβ SH3 and GK domains in defining channel properties. The studies build upon a previously identified split-domain pair that displays a trans SH3–GK interaction, and fully reconstitutes CaVβ effects on channel trafficking, activation gating, and increased open probability (Po). Here, by varying the precise locations used to separate SH3 and GK domains and monitoring subsequent SH3–GK interactions by fluorescence resonance energy transfer (FRET), we identified a particular split-domain pair that displayed a subtly altered configuration of the trans SH3–GK interaction. Remarkably, this pair discriminated between CaVβ trafficking and gating properties: α1C targeting to the membrane was fully reconstituted, whereas shifts in activation gating and increased Po functions were selectively lost. A more extreme case, in which the trans SH3–GK interaction was selectively ablated, yielded a split-domain pair that could reconstitute neither the trafficking nor gating-modulation functions, even though both moieties could independently engage their respective binding sites on the α1C (CaV1.2) subunit. The results reveal that CaVβ SH3 and GK domains function codependently to tune Ca2+ channel trafficking and gating properties, and suggest new paradigms for physiological and therapeutic regulation of Ca2+ channel activity.
doi_str_mv 10.1085/jgp.200509354
format Article
fullrecord <record><control><sourceid>pubmedcentral_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2266626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_2266626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1764-4d634170ffb46ff26102b34e9107c3a5fd1225eadf94040535a583599f3365b33</originalsourceid><addsrcrecordid>eNpVkMtKw0AUhgdRbK0u3c9e0p65JtkIpWpbVBQv3YZJMpOmpDNhkgh9LR_EZzKlUvBsDpz_P9_iQ-iawJhAJCaboh5TAAExE_wEDYngEIQhj07REIDSgNBYDNBF02ygH0HhHA2IJJEUkg1RNcUztfr5xu8LNpl3yu4q1Wr8WFrVaHzntqq0eGlb7VXWls7iN110-0qDn7uqLetK41fvau3bsr85g1eualWhg6Iv5T2c3uDZWlmrq-YSnRlVNfrqb4_Q58P9x2wRPL3Ml7PpU5CRUPKA55JxEoIxKZfGUEmApozrmECYMSVMTigVWuUm5sBBMKFExEQcG8akSBkbodsDt-7Src4zbVuvqqT25Vb5XeJUmfxPbLlOCveVUCqlpLIHBAdA5l3TeG2OvwSSvfak154ctbNfl5109g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A CaVβ SH3/Guanylate Kinase Domain Interaction Regulates Multiple Properties of Voltage-gated Ca2+ Channels</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Takahashi, Shoji X. ; Miriyala, Jayalakshmi ; Tay, Lai Hock ; Yue, David T. ; Colecraft, Henry M.</creator><creatorcontrib>Takahashi, Shoji X. ; Miriyala, Jayalakshmi ; Tay, Lai Hock ; Yue, David T. ; Colecraft, Henry M.</creatorcontrib><description>Auxiliary Ca2+ channel β subunits (CaVβ) regulate cellular Ca2+ signaling by trafficking pore-forming α1 subunits to the membrane and normalizing channel gating. These effects are mediated through a characteristic src homology 3/guanylate kinase (SH3–GK) structural module, a design feature shared in common with the membrane-associated guanylate kinase (MAGUK) family of scaffold proteins. However, the mechanisms by which the CaVβ SH3–GK module regulates multiple Ca2+ channel functions are not well understood. Here, using a split-domain approach, we investigated the role of the interrelationship between CaVβ SH3 and GK domains in defining channel properties. The studies build upon a previously identified split-domain pair that displays a trans SH3–GK interaction, and fully reconstitutes CaVβ effects on channel trafficking, activation gating, and increased open probability (Po). Here, by varying the precise locations used to separate SH3 and GK domains and monitoring subsequent SH3–GK interactions by fluorescence resonance energy transfer (FRET), we identified a particular split-domain pair that displayed a subtly altered configuration of the trans SH3–GK interaction. Remarkably, this pair discriminated between CaVβ trafficking and gating properties: α1C targeting to the membrane was fully reconstituted, whereas shifts in activation gating and increased Po functions were selectively lost. A more extreme case, in which the trans SH3–GK interaction was selectively ablated, yielded a split-domain pair that could reconstitute neither the trafficking nor gating-modulation functions, even though both moieties could independently engage their respective binding sites on the α1C (CaV1.2) subunit. The results reveal that CaVβ SH3 and GK domains function codependently to tune Ca2+ channel trafficking and gating properties, and suggest new paradigms for physiological and therapeutic regulation of Ca2+ channel activity.</description><identifier>ISSN: 0022-1295</identifier><identifier>EISSN: 1540-7748</identifier><identifier>DOI: 10.1085/jgp.200509354</identifier><identifier>PMID: 16186563</identifier><language>eng</language><publisher>The Rockefeller University Press</publisher><ispartof>The Journal of general physiology, 2005-10, Vol.126 (4), p.365-377</ispartof><rights>Copyright © 2005, The Rockefeller University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1764-4d634170ffb46ff26102b34e9107c3a5fd1225eadf94040535a583599f3365b33</citedby><cites>FETCH-LOGICAL-c1764-4d634170ffb46ff26102b34e9107c3a5fd1225eadf94040535a583599f3365b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids></links><search><creatorcontrib>Takahashi, Shoji X.</creatorcontrib><creatorcontrib>Miriyala, Jayalakshmi</creatorcontrib><creatorcontrib>Tay, Lai Hock</creatorcontrib><creatorcontrib>Yue, David T.</creatorcontrib><creatorcontrib>Colecraft, Henry M.</creatorcontrib><title>A CaVβ SH3/Guanylate Kinase Domain Interaction Regulates Multiple Properties of Voltage-gated Ca2+ Channels</title><title>The Journal of general physiology</title><description>Auxiliary Ca2+ channel β subunits (CaVβ) regulate cellular Ca2+ signaling by trafficking pore-forming α1 subunits to the membrane and normalizing channel gating. These effects are mediated through a characteristic src homology 3/guanylate kinase (SH3–GK) structural module, a design feature shared in common with the membrane-associated guanylate kinase (MAGUK) family of scaffold proteins. However, the mechanisms by which the CaVβ SH3–GK module regulates multiple Ca2+ channel functions are not well understood. Here, using a split-domain approach, we investigated the role of the interrelationship between CaVβ SH3 and GK domains in defining channel properties. The studies build upon a previously identified split-domain pair that displays a trans SH3–GK interaction, and fully reconstitutes CaVβ effects on channel trafficking, activation gating, and increased open probability (Po). Here, by varying the precise locations used to separate SH3 and GK domains and monitoring subsequent SH3–GK interactions by fluorescence resonance energy transfer (FRET), we identified a particular split-domain pair that displayed a subtly altered configuration of the trans SH3–GK interaction. Remarkably, this pair discriminated between CaVβ trafficking and gating properties: α1C targeting to the membrane was fully reconstituted, whereas shifts in activation gating and increased Po functions were selectively lost. A more extreme case, in which the trans SH3–GK interaction was selectively ablated, yielded a split-domain pair that could reconstitute neither the trafficking nor gating-modulation functions, even though both moieties could independently engage their respective binding sites on the α1C (CaV1.2) subunit. The results reveal that CaVβ SH3 and GK domains function codependently to tune Ca2+ channel trafficking and gating properties, and suggest new paradigms for physiological and therapeutic regulation of Ca2+ channel activity.</description><issn>0022-1295</issn><issn>1540-7748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpVkMtKw0AUhgdRbK0u3c9e0p65JtkIpWpbVBQv3YZJMpOmpDNhkgh9LR_EZzKlUvBsDpz_P9_iQ-iawJhAJCaboh5TAAExE_wEDYngEIQhj07REIDSgNBYDNBF02ygH0HhHA2IJJEUkg1RNcUztfr5xu8LNpl3yu4q1Wr8WFrVaHzntqq0eGlb7VXWls7iN110-0qDn7uqLetK41fvau3bsr85g1eualWhg6Iv5T2c3uDZWlmrq-YSnRlVNfrqb4_Q58P9x2wRPL3Ml7PpU5CRUPKA55JxEoIxKZfGUEmApozrmECYMSVMTigVWuUm5sBBMKFExEQcG8akSBkbodsDt-7Src4zbVuvqqT25Vb5XeJUmfxPbLlOCveVUCqlpLIHBAdA5l3TeG2OvwSSvfak154ctbNfl5109g</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Takahashi, Shoji X.</creator><creator>Miriyala, Jayalakshmi</creator><creator>Tay, Lai Hock</creator><creator>Yue, David T.</creator><creator>Colecraft, Henry M.</creator><general>The Rockefeller University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20051001</creationdate><title>A CaVβ SH3/Guanylate Kinase Domain Interaction Regulates Multiple Properties of Voltage-gated Ca2+ Channels</title><author>Takahashi, Shoji X. ; Miriyala, Jayalakshmi ; Tay, Lai Hock ; Yue, David T. ; Colecraft, Henry M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1764-4d634170ffb46ff26102b34e9107c3a5fd1225eadf94040535a583599f3365b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takahashi, Shoji X.</creatorcontrib><creatorcontrib>Miriyala, Jayalakshmi</creatorcontrib><creatorcontrib>Tay, Lai Hock</creatorcontrib><creatorcontrib>Yue, David T.</creatorcontrib><creatorcontrib>Colecraft, Henry M.</creatorcontrib><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of general physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takahashi, Shoji X.</au><au>Miriyala, Jayalakshmi</au><au>Tay, Lai Hock</au><au>Yue, David T.</au><au>Colecraft, Henry M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A CaVβ SH3/Guanylate Kinase Domain Interaction Regulates Multiple Properties of Voltage-gated Ca2+ Channels</atitle><jtitle>The Journal of general physiology</jtitle><date>2005-10-01</date><risdate>2005</risdate><volume>126</volume><issue>4</issue><spage>365</spage><epage>377</epage><pages>365-377</pages><issn>0022-1295</issn><eissn>1540-7748</eissn><abstract>Auxiliary Ca2+ channel β subunits (CaVβ) regulate cellular Ca2+ signaling by trafficking pore-forming α1 subunits to the membrane and normalizing channel gating. These effects are mediated through a characteristic src homology 3/guanylate kinase (SH3–GK) structural module, a design feature shared in common with the membrane-associated guanylate kinase (MAGUK) family of scaffold proteins. However, the mechanisms by which the CaVβ SH3–GK module regulates multiple Ca2+ channel functions are not well understood. Here, using a split-domain approach, we investigated the role of the interrelationship between CaVβ SH3 and GK domains in defining channel properties. The studies build upon a previously identified split-domain pair that displays a trans SH3–GK interaction, and fully reconstitutes CaVβ effects on channel trafficking, activation gating, and increased open probability (Po). Here, by varying the precise locations used to separate SH3 and GK domains and monitoring subsequent SH3–GK interactions by fluorescence resonance energy transfer (FRET), we identified a particular split-domain pair that displayed a subtly altered configuration of the trans SH3–GK interaction. Remarkably, this pair discriminated between CaVβ trafficking and gating properties: α1C targeting to the membrane was fully reconstituted, whereas shifts in activation gating and increased Po functions were selectively lost. A more extreme case, in which the trans SH3–GK interaction was selectively ablated, yielded a split-domain pair that could reconstitute neither the trafficking nor gating-modulation functions, even though both moieties could independently engage their respective binding sites on the α1C (CaV1.2) subunit. The results reveal that CaVβ SH3 and GK domains function codependently to tune Ca2+ channel trafficking and gating properties, and suggest new paradigms for physiological and therapeutic regulation of Ca2+ channel activity.</abstract><pub>The Rockefeller University Press</pub><pmid>16186563</pmid><doi>10.1085/jgp.200509354</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1295
ispartof The Journal of general physiology, 2005-10, Vol.126 (4), p.365-377
issn 0022-1295
1540-7748
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2266626
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
title A CaVβ SH3/Guanylate Kinase Domain Interaction Regulates Multiple Properties of Voltage-gated Ca2+ Channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A49%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20CaV%CE%B2%20SH3/Guanylate%20Kinase%20Domain%20Interaction%20Regulates%20Multiple%20Properties%20of%20Voltage-gated%20Ca2+%20Channels&rft.jtitle=The%20Journal%20of%20general%20physiology&rft.au=Takahashi,%20Shoji%20X.&rft.date=2005-10-01&rft.volume=126&rft.issue=4&rft.spage=365&rft.epage=377&rft.pages=365-377&rft.issn=0022-1295&rft.eissn=1540-7748&rft_id=info:doi/10.1085/jgp.200509354&rft_dat=%3Cpubmedcentral_cross%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_2266626%3C/pubmedcentral_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/16186563&rfr_iscdi=true