Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells
We developed a method for the efficient generation of functional dopaminergic (DA) neurons from human embryonic stem cells (hESCs) on a large scale. The most unique feature of this method is the generation of homogeneous spherical neural masses (SNMs) from the hESC-derived neural precursors. These S...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2008-03, Vol.105 (9), p.3392-3397 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3397 |
---|---|
container_issue | 9 |
container_start_page | 3392 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 105 |
creator | Cho, Myung Soo Lee, Young-Eun Kim, Ji Young Chung, Seungsoo Cho, Yoon Hee Kim, Dae-Sung Kang, Sang-Moon Lee, Haksup Kim, Myung-Hwa Kim, Jeong-Hoon Leem, Joong Woo Oh, Sun Kyung Choi, Young Min Hwang, Dong-Youn Chang, Jin Woo Kim, Dong-Wook |
description | We developed a method for the efficient generation of functional dopaminergic (DA) neurons from human embryonic stem cells (hESCs) on a large scale. The most unique feature of this method is the generation of homogeneous spherical neural masses (SNMs) from the hESC-derived neural precursors. These SNMs provide several advantages: (i) they can be passaged for a long time without losing their differentiation capability into DA neurons; (ii) they can be coaxed into DA neurons at much higher efficiency than that from previous reports (86% tyrosine hydroxylase-positive neurons/total neurons); (iii) the induction of DA neurons from SNMs only takes 14 days; and (iv) no feeder cells are required during differentiation. These advantages allowed us to obtain a large number of DA neurons within a short time period and minimized potential contamination of unwanted cells or pathogens coming from the feeder layer. The highly efficient differentiation may not only enhance the efficacy of the cell therapy but also reduce the potential tumor formation from the undifferentiated residual hESCs. In line with this effect, we have never observed any tumor formation from the transplanted animals used in our study. When grafted into a parkinsonian rat model, the hESC-derived DA neurons elicited clear behavioral recovery in three behavioral tests. In summary, our study paves the way for the large-scale generation of purer and functional DA neurons for future clinical applications. |
doi_str_mv | 10.1073/pnas.0712359105 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2265201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25461245</jstor_id><sourcerecordid>25461245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c616t-3513b0f791918842b0b7784107306358ead9ec3b634b767875437687bcc05b323</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxSMEokvhzAmwOMAp7diOvy5IqAKKVIkD9Gw5XifrVWIvdlKx_z2xdtUtHMCXsTS_eXpvpqpeYrjAIOjlLph8AQITyhQG9qhaYVC45o2Cx9UKgIhaNqQ5q57lvAUAxSQ8rc6wpMAwk6tqe-37zbBHruu89S5MyIQ1GkzqXZ2tGRzqXXDJTD4GFDvUzcGWvxnQOu7M6INDwc0phoy6FEe0mUcTkBvbtI_BW5QnNyLrhiE_r550ZsjuxbGeV7efP_24uq5vvn35evXxprYc86mmDNMWOqGwwnIx30IrhGxKXOCUSWfWylnactq0ggspWEMFl6K1FlhLCT2vPhx0d3M7urVdQiUz6F3yo0l7HY3Xf3aC3-g-3mlCOCOAF4F3R4EUf84uT3r0uUQwwcU5awGULw_-CxJQhEsqF_DtX-A2zmlZYmEwJbhhYoEuD5BNMefkunvLGHSJr8u19enay8Trh0lP_PG8D4AyeZJjWmlKVdnV-38CupuHYXK_poV8dSC3eYrpHiWs4Zg0xcubQ78zUZs--axvv5dwAJJLJhT9Dcqv0I0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201321457</pqid></control><display><type>article</type><title>Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cho, Myung Soo ; Lee, Young-Eun ; Kim, Ji Young ; Chung, Seungsoo ; Cho, Yoon Hee ; Kim, Dae-Sung ; Kang, Sang-Moon ; Lee, Haksup ; Kim, Myung-Hwa ; Kim, Jeong-Hoon ; Leem, Joong Woo ; Oh, Sun Kyung ; Choi, Young Min ; Hwang, Dong-Youn ; Chang, Jin Woo ; Kim, Dong-Wook</creator><creatorcontrib>Cho, Myung Soo ; Lee, Young-Eun ; Kim, Ji Young ; Chung, Seungsoo ; Cho, Yoon Hee ; Kim, Dae-Sung ; Kang, Sang-Moon ; Lee, Haksup ; Kim, Myung-Hwa ; Kim, Jeong-Hoon ; Leem, Joong Woo ; Oh, Sun Kyung ; Choi, Young Min ; Hwang, Dong-Youn ; Chang, Jin Woo ; Kim, Dong-Wook</creatorcontrib><description>We developed a method for the efficient generation of functional dopaminergic (DA) neurons from human embryonic stem cells (hESCs) on a large scale. The most unique feature of this method is the generation of homogeneous spherical neural masses (SNMs) from the hESC-derived neural precursors. These SNMs provide several advantages: (i) they can be passaged for a long time without losing their differentiation capability into DA neurons; (ii) they can be coaxed into DA neurons at much higher efficiency than that from previous reports (86% tyrosine hydroxylase-positive neurons/total neurons); (iii) the induction of DA neurons from SNMs only takes 14 days; and (iv) no feeder cells are required during differentiation. These advantages allowed us to obtain a large number of DA neurons within a short time period and minimized potential contamination of unwanted cells or pathogens coming from the feeder layer. The highly efficient differentiation may not only enhance the efficacy of the cell therapy but also reduce the potential tumor formation from the undifferentiated residual hESCs. In line with this effect, we have never observed any tumor formation from the transplanted animals used in our study. When grafted into a parkinsonian rat model, the hESC-derived DA neurons elicited clear behavioral recovery in three behavioral tests. In summary, our study paves the way for the large-scale generation of purer and functional DA neurons for future clinical applications.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0712359105</identifier><identifier>PMID: 18305158</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animal models ; Animals ; Antibodies ; Biological Sciences ; Cell Culture Techniques - methods ; Cell Differentiation ; Cell lines ; Cell Transplantation ; Disease Models, Animal ; Dopamine ; Embryonic stem cells ; Embryonic Stem Cells - cytology ; Feeder cells ; Humans ; Methods ; Neurons ; Neurons - cytology ; Neurons - transplantation ; Neurotransmitters ; Parkinson Disease - therapy ; Rats ; Rodents ; Rotation ; Stem cells ; Studies ; Tissue grafting ; Transplantation ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-03, Vol.105 (9), p.3392-3397</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Mar 4, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c616t-3513b0f791918842b0b7784107306358ead9ec3b634b767875437687bcc05b323</citedby><cites>FETCH-LOGICAL-c616t-3513b0f791918842b0b7784107306358ead9ec3b634b767875437687bcc05b323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/9.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25461245$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25461245$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18305158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Myung Soo</creatorcontrib><creatorcontrib>Lee, Young-Eun</creatorcontrib><creatorcontrib>Kim, Ji Young</creatorcontrib><creatorcontrib>Chung, Seungsoo</creatorcontrib><creatorcontrib>Cho, Yoon Hee</creatorcontrib><creatorcontrib>Kim, Dae-Sung</creatorcontrib><creatorcontrib>Kang, Sang-Moon</creatorcontrib><creatorcontrib>Lee, Haksup</creatorcontrib><creatorcontrib>Kim, Myung-Hwa</creatorcontrib><creatorcontrib>Kim, Jeong-Hoon</creatorcontrib><creatorcontrib>Leem, Joong Woo</creatorcontrib><creatorcontrib>Oh, Sun Kyung</creatorcontrib><creatorcontrib>Choi, Young Min</creatorcontrib><creatorcontrib>Hwang, Dong-Youn</creatorcontrib><creatorcontrib>Chang, Jin Woo</creatorcontrib><creatorcontrib>Kim, Dong-Wook</creatorcontrib><title>Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We developed a method for the efficient generation of functional dopaminergic (DA) neurons from human embryonic stem cells (hESCs) on a large scale. The most unique feature of this method is the generation of homogeneous spherical neural masses (SNMs) from the hESC-derived neural precursors. These SNMs provide several advantages: (i) they can be passaged for a long time without losing their differentiation capability into DA neurons; (ii) they can be coaxed into DA neurons at much higher efficiency than that from previous reports (86% tyrosine hydroxylase-positive neurons/total neurons); (iii) the induction of DA neurons from SNMs only takes 14 days; and (iv) no feeder cells are required during differentiation. These advantages allowed us to obtain a large number of DA neurons within a short time period and minimized potential contamination of unwanted cells or pathogens coming from the feeder layer. The highly efficient differentiation may not only enhance the efficacy of the cell therapy but also reduce the potential tumor formation from the undifferentiated residual hESCs. In line with this effect, we have never observed any tumor formation from the transplanted animals used in our study. When grafted into a parkinsonian rat model, the hESC-derived DA neurons elicited clear behavioral recovery in three behavioral tests. In summary, our study paves the way for the large-scale generation of purer and functional DA neurons for future clinical applications.</description><subject>Animal models</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Biological Sciences</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Differentiation</subject><subject>Cell lines</subject><subject>Cell Transplantation</subject><subject>Disease Models, Animal</subject><subject>Dopamine</subject><subject>Embryonic stem cells</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Feeder cells</subject><subject>Humans</subject><subject>Methods</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - transplantation</subject><subject>Neurotransmitters</subject><subject>Parkinson Disease - therapy</subject><subject>Rats</subject><subject>Rodents</subject><subject>Rotation</subject><subject>Stem cells</subject><subject>Studies</subject><subject>Tissue grafting</subject><subject>Transplantation</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxSMEokvhzAmwOMAp7diOvy5IqAKKVIkD9Gw5XifrVWIvdlKx_z2xdtUtHMCXsTS_eXpvpqpeYrjAIOjlLph8AQITyhQG9qhaYVC45o2Cx9UKgIhaNqQ5q57lvAUAxSQ8rc6wpMAwk6tqe-37zbBHruu89S5MyIQ1GkzqXZ2tGRzqXXDJTD4GFDvUzcGWvxnQOu7M6INDwc0phoy6FEe0mUcTkBvbtI_BW5QnNyLrhiE_r550ZsjuxbGeV7efP_24uq5vvn35evXxprYc86mmDNMWOqGwwnIx30IrhGxKXOCUSWfWylnactq0ggspWEMFl6K1FlhLCT2vPhx0d3M7urVdQiUz6F3yo0l7HY3Xf3aC3-g-3mlCOCOAF4F3R4EUf84uT3r0uUQwwcU5awGULw_-CxJQhEsqF_DtX-A2zmlZYmEwJbhhYoEuD5BNMefkunvLGHSJr8u19enay8Trh0lP_PG8D4AyeZJjWmlKVdnV-38CupuHYXK_poV8dSC3eYrpHiWs4Zg0xcubQ78zUZs--axvv5dwAJJLJhT9Dcqv0I0</recordid><startdate>20080304</startdate><enddate>20080304</enddate><creator>Cho, Myung Soo</creator><creator>Lee, Young-Eun</creator><creator>Kim, Ji Young</creator><creator>Chung, Seungsoo</creator><creator>Cho, Yoon Hee</creator><creator>Kim, Dae-Sung</creator><creator>Kang, Sang-Moon</creator><creator>Lee, Haksup</creator><creator>Kim, Myung-Hwa</creator><creator>Kim, Jeong-Hoon</creator><creator>Leem, Joong Woo</creator><creator>Oh, Sun Kyung</creator><creator>Choi, Young Min</creator><creator>Hwang, Dong-Youn</creator><creator>Chang, Jin Woo</creator><creator>Kim, Dong-Wook</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080304</creationdate><title>Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells</title><author>Cho, Myung Soo ; Lee, Young-Eun ; Kim, Ji Young ; Chung, Seungsoo ; Cho, Yoon Hee ; Kim, Dae-Sung ; Kang, Sang-Moon ; Lee, Haksup ; Kim, Myung-Hwa ; Kim, Jeong-Hoon ; Leem, Joong Woo ; Oh, Sun Kyung ; Choi, Young Min ; Hwang, Dong-Youn ; Chang, Jin Woo ; Kim, Dong-Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c616t-3513b0f791918842b0b7784107306358ead9ec3b634b767875437687bcc05b323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Biological Sciences</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Differentiation</topic><topic>Cell lines</topic><topic>Cell Transplantation</topic><topic>Disease Models, Animal</topic><topic>Dopamine</topic><topic>Embryonic stem cells</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Feeder cells</topic><topic>Humans</topic><topic>Methods</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - transplantation</topic><topic>Neurotransmitters</topic><topic>Parkinson Disease - therapy</topic><topic>Rats</topic><topic>Rodents</topic><topic>Rotation</topic><topic>Stem cells</topic><topic>Studies</topic><topic>Tissue grafting</topic><topic>Transplantation</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Myung Soo</creatorcontrib><creatorcontrib>Lee, Young-Eun</creatorcontrib><creatorcontrib>Kim, Ji Young</creatorcontrib><creatorcontrib>Chung, Seungsoo</creatorcontrib><creatorcontrib>Cho, Yoon Hee</creatorcontrib><creatorcontrib>Kim, Dae-Sung</creatorcontrib><creatorcontrib>Kang, Sang-Moon</creatorcontrib><creatorcontrib>Lee, Haksup</creatorcontrib><creatorcontrib>Kim, Myung-Hwa</creatorcontrib><creatorcontrib>Kim, Jeong-Hoon</creatorcontrib><creatorcontrib>Leem, Joong Woo</creatorcontrib><creatorcontrib>Oh, Sun Kyung</creatorcontrib><creatorcontrib>Choi, Young Min</creatorcontrib><creatorcontrib>Hwang, Dong-Youn</creatorcontrib><creatorcontrib>Chang, Jin Woo</creatorcontrib><creatorcontrib>Kim, Dong-Wook</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Myung Soo</au><au>Lee, Young-Eun</au><au>Kim, Ji Young</au><au>Chung, Seungsoo</au><au>Cho, Yoon Hee</au><au>Kim, Dae-Sung</au><au>Kang, Sang-Moon</au><au>Lee, Haksup</au><au>Kim, Myung-Hwa</au><au>Kim, Jeong-Hoon</au><au>Leem, Joong Woo</au><au>Oh, Sun Kyung</au><au>Choi, Young Min</au><au>Hwang, Dong-Youn</au><au>Chang, Jin Woo</au><au>Kim, Dong-Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-03-04</date><risdate>2008</risdate><volume>105</volume><issue>9</issue><spage>3392</spage><epage>3397</epage><pages>3392-3397</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We developed a method for the efficient generation of functional dopaminergic (DA) neurons from human embryonic stem cells (hESCs) on a large scale. The most unique feature of this method is the generation of homogeneous spherical neural masses (SNMs) from the hESC-derived neural precursors. These SNMs provide several advantages: (i) they can be passaged for a long time without losing their differentiation capability into DA neurons; (ii) they can be coaxed into DA neurons at much higher efficiency than that from previous reports (86% tyrosine hydroxylase-positive neurons/total neurons); (iii) the induction of DA neurons from SNMs only takes 14 days; and (iv) no feeder cells are required during differentiation. These advantages allowed us to obtain a large number of DA neurons within a short time period and minimized potential contamination of unwanted cells or pathogens coming from the feeder layer. The highly efficient differentiation may not only enhance the efficacy of the cell therapy but also reduce the potential tumor formation from the undifferentiated residual hESCs. In line with this effect, we have never observed any tumor formation from the transplanted animals used in our study. When grafted into a parkinsonian rat model, the hESC-derived DA neurons elicited clear behavioral recovery in three behavioral tests. In summary, our study paves the way for the large-scale generation of purer and functional DA neurons for future clinical applications.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18305158</pmid><doi>10.1073/pnas.0712359105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2008-03, Vol.105 (9), p.3392-3397 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2265201 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animal models Animals Antibodies Biological Sciences Cell Culture Techniques - methods Cell Differentiation Cell lines Cell Transplantation Disease Models, Animal Dopamine Embryonic stem cells Embryonic Stem Cells - cytology Feeder cells Humans Methods Neurons Neurons - cytology Neurons - transplantation Neurotransmitters Parkinson Disease - therapy Rats Rodents Rotation Stem cells Studies Tissue grafting Transplantation Tumors |
title | Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A44%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20efficient%20and%20large-scale%20generation%20of%20functional%20dopamine%20neurons%20from%20human%20embryonic%20stem%20cells&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Cho,%20Myung%20Soo&rft.date=2008-03-04&rft.volume=105&rft.issue=9&rft.spage=3392&rft.epage=3397&rft.pages=3392-3397&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0712359105&rft_dat=%3Cjstor_pubme%3E25461245%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201321457&rft_id=info:pmid/18305158&rft_jstor_id=25461245&rfr_iscdi=true |