Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells

We developed a method for the efficient generation of functional dopaminergic (DA) neurons from human embryonic stem cells (hESCs) on a large scale. The most unique feature of this method is the generation of homogeneous spherical neural masses (SNMs) from the hESC-derived neural precursors. These S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2008-03, Vol.105 (9), p.3392-3397
Hauptverfasser: Cho, Myung Soo, Lee, Young-Eun, Kim, Ji Young, Chung, Seungsoo, Cho, Yoon Hee, Kim, Dae-Sung, Kang, Sang-Moon, Lee, Haksup, Kim, Myung-Hwa, Kim, Jeong-Hoon, Leem, Joong Woo, Oh, Sun Kyung, Choi, Young Min, Hwang, Dong-Youn, Chang, Jin Woo, Kim, Dong-Wook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3397
container_issue 9
container_start_page 3392
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 105
creator Cho, Myung Soo
Lee, Young-Eun
Kim, Ji Young
Chung, Seungsoo
Cho, Yoon Hee
Kim, Dae-Sung
Kang, Sang-Moon
Lee, Haksup
Kim, Myung-Hwa
Kim, Jeong-Hoon
Leem, Joong Woo
Oh, Sun Kyung
Choi, Young Min
Hwang, Dong-Youn
Chang, Jin Woo
Kim, Dong-Wook
description We developed a method for the efficient generation of functional dopaminergic (DA) neurons from human embryonic stem cells (hESCs) on a large scale. The most unique feature of this method is the generation of homogeneous spherical neural masses (SNMs) from the hESC-derived neural precursors. These SNMs provide several advantages: (i) they can be passaged for a long time without losing their differentiation capability into DA neurons; (ii) they can be coaxed into DA neurons at much higher efficiency than that from previous reports (86% tyrosine hydroxylase-positive neurons/total neurons); (iii) the induction of DA neurons from SNMs only takes 14 days; and (iv) no feeder cells are required during differentiation. These advantages allowed us to obtain a large number of DA neurons within a short time period and minimized potential contamination of unwanted cells or pathogens coming from the feeder layer. The highly efficient differentiation may not only enhance the efficacy of the cell therapy but also reduce the potential tumor formation from the undifferentiated residual hESCs. In line with this effect, we have never observed any tumor formation from the transplanted animals used in our study. When grafted into a parkinsonian rat model, the hESC-derived DA neurons elicited clear behavioral recovery in three behavioral tests. In summary, our study paves the way for the large-scale generation of purer and functional DA neurons for future clinical applications.
doi_str_mv 10.1073/pnas.0712359105
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2265201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25461245</jstor_id><sourcerecordid>25461245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c616t-3513b0f791918842b0b7784107306358ead9ec3b634b767875437687bcc05b323</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxSMEokvhzAmwOMAp7diOvy5IqAKKVIkD9Gw5XifrVWIvdlKx_z2xdtUtHMCXsTS_eXpvpqpeYrjAIOjlLph8AQITyhQG9qhaYVC45o2Cx9UKgIhaNqQ5q57lvAUAxSQ8rc6wpMAwk6tqe-37zbBHruu89S5MyIQ1GkzqXZ2tGRzqXXDJTD4GFDvUzcGWvxnQOu7M6INDwc0phoy6FEe0mUcTkBvbtI_BW5QnNyLrhiE_r550ZsjuxbGeV7efP_24uq5vvn35evXxprYc86mmDNMWOqGwwnIx30IrhGxKXOCUSWfWylnactq0ggspWEMFl6K1FlhLCT2vPhx0d3M7urVdQiUz6F3yo0l7HY3Xf3aC3-g-3mlCOCOAF4F3R4EUf84uT3r0uUQwwcU5awGULw_-CxJQhEsqF_DtX-A2zmlZYmEwJbhhYoEuD5BNMefkunvLGHSJr8u19enay8Trh0lP_PG8D4AyeZJjWmlKVdnV-38CupuHYXK_poV8dSC3eYrpHiWs4Zg0xcubQ78zUZs--axvv5dwAJJLJhT9Dcqv0I0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201321457</pqid></control><display><type>article</type><title>Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cho, Myung Soo ; Lee, Young-Eun ; Kim, Ji Young ; Chung, Seungsoo ; Cho, Yoon Hee ; Kim, Dae-Sung ; Kang, Sang-Moon ; Lee, Haksup ; Kim, Myung-Hwa ; Kim, Jeong-Hoon ; Leem, Joong Woo ; Oh, Sun Kyung ; Choi, Young Min ; Hwang, Dong-Youn ; Chang, Jin Woo ; Kim, Dong-Wook</creator><creatorcontrib>Cho, Myung Soo ; Lee, Young-Eun ; Kim, Ji Young ; Chung, Seungsoo ; Cho, Yoon Hee ; Kim, Dae-Sung ; Kang, Sang-Moon ; Lee, Haksup ; Kim, Myung-Hwa ; Kim, Jeong-Hoon ; Leem, Joong Woo ; Oh, Sun Kyung ; Choi, Young Min ; Hwang, Dong-Youn ; Chang, Jin Woo ; Kim, Dong-Wook</creatorcontrib><description>We developed a method for the efficient generation of functional dopaminergic (DA) neurons from human embryonic stem cells (hESCs) on a large scale. The most unique feature of this method is the generation of homogeneous spherical neural masses (SNMs) from the hESC-derived neural precursors. These SNMs provide several advantages: (i) they can be passaged for a long time without losing their differentiation capability into DA neurons; (ii) they can be coaxed into DA neurons at much higher efficiency than that from previous reports (86% tyrosine hydroxylase-positive neurons/total neurons); (iii) the induction of DA neurons from SNMs only takes 14 days; and (iv) no feeder cells are required during differentiation. These advantages allowed us to obtain a large number of DA neurons within a short time period and minimized potential contamination of unwanted cells or pathogens coming from the feeder layer. The highly efficient differentiation may not only enhance the efficacy of the cell therapy but also reduce the potential tumor formation from the undifferentiated residual hESCs. In line with this effect, we have never observed any tumor formation from the transplanted animals used in our study. When grafted into a parkinsonian rat model, the hESC-derived DA neurons elicited clear behavioral recovery in three behavioral tests. In summary, our study paves the way for the large-scale generation of purer and functional DA neurons for future clinical applications.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0712359105</identifier><identifier>PMID: 18305158</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animal models ; Animals ; Antibodies ; Biological Sciences ; Cell Culture Techniques - methods ; Cell Differentiation ; Cell lines ; Cell Transplantation ; Disease Models, Animal ; Dopamine ; Embryonic stem cells ; Embryonic Stem Cells - cytology ; Feeder cells ; Humans ; Methods ; Neurons ; Neurons - cytology ; Neurons - transplantation ; Neurotransmitters ; Parkinson Disease - therapy ; Rats ; Rodents ; Rotation ; Stem cells ; Studies ; Tissue grafting ; Transplantation ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-03, Vol.105 (9), p.3392-3397</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Mar 4, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c616t-3513b0f791918842b0b7784107306358ead9ec3b634b767875437687bcc05b323</citedby><cites>FETCH-LOGICAL-c616t-3513b0f791918842b0b7784107306358ead9ec3b634b767875437687bcc05b323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/9.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25461245$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25461245$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18305158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Myung Soo</creatorcontrib><creatorcontrib>Lee, Young-Eun</creatorcontrib><creatorcontrib>Kim, Ji Young</creatorcontrib><creatorcontrib>Chung, Seungsoo</creatorcontrib><creatorcontrib>Cho, Yoon Hee</creatorcontrib><creatorcontrib>Kim, Dae-Sung</creatorcontrib><creatorcontrib>Kang, Sang-Moon</creatorcontrib><creatorcontrib>Lee, Haksup</creatorcontrib><creatorcontrib>Kim, Myung-Hwa</creatorcontrib><creatorcontrib>Kim, Jeong-Hoon</creatorcontrib><creatorcontrib>Leem, Joong Woo</creatorcontrib><creatorcontrib>Oh, Sun Kyung</creatorcontrib><creatorcontrib>Choi, Young Min</creatorcontrib><creatorcontrib>Hwang, Dong-Youn</creatorcontrib><creatorcontrib>Chang, Jin Woo</creatorcontrib><creatorcontrib>Kim, Dong-Wook</creatorcontrib><title>Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We developed a method for the efficient generation of functional dopaminergic (DA) neurons from human embryonic stem cells (hESCs) on a large scale. The most unique feature of this method is the generation of homogeneous spherical neural masses (SNMs) from the hESC-derived neural precursors. These SNMs provide several advantages: (i) they can be passaged for a long time without losing their differentiation capability into DA neurons; (ii) they can be coaxed into DA neurons at much higher efficiency than that from previous reports (86% tyrosine hydroxylase-positive neurons/total neurons); (iii) the induction of DA neurons from SNMs only takes 14 days; and (iv) no feeder cells are required during differentiation. These advantages allowed us to obtain a large number of DA neurons within a short time period and minimized potential contamination of unwanted cells or pathogens coming from the feeder layer. The highly efficient differentiation may not only enhance the efficacy of the cell therapy but also reduce the potential tumor formation from the undifferentiated residual hESCs. In line with this effect, we have never observed any tumor formation from the transplanted animals used in our study. When grafted into a parkinsonian rat model, the hESC-derived DA neurons elicited clear behavioral recovery in three behavioral tests. In summary, our study paves the way for the large-scale generation of purer and functional DA neurons for future clinical applications.</description><subject>Animal models</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Biological Sciences</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Differentiation</subject><subject>Cell lines</subject><subject>Cell Transplantation</subject><subject>Disease Models, Animal</subject><subject>Dopamine</subject><subject>Embryonic stem cells</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Feeder cells</subject><subject>Humans</subject><subject>Methods</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - transplantation</subject><subject>Neurotransmitters</subject><subject>Parkinson Disease - therapy</subject><subject>Rats</subject><subject>Rodents</subject><subject>Rotation</subject><subject>Stem cells</subject><subject>Studies</subject><subject>Tissue grafting</subject><subject>Transplantation</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxSMEokvhzAmwOMAp7diOvy5IqAKKVIkD9Gw5XifrVWIvdlKx_z2xdtUtHMCXsTS_eXpvpqpeYrjAIOjlLph8AQITyhQG9qhaYVC45o2Cx9UKgIhaNqQ5q57lvAUAxSQ8rc6wpMAwk6tqe-37zbBHruu89S5MyIQ1GkzqXZ2tGRzqXXDJTD4GFDvUzcGWvxnQOu7M6INDwc0phoy6FEe0mUcTkBvbtI_BW5QnNyLrhiE_r550ZsjuxbGeV7efP_24uq5vvn35evXxprYc86mmDNMWOqGwwnIx30IrhGxKXOCUSWfWylnactq0ggspWEMFl6K1FlhLCT2vPhx0d3M7urVdQiUz6F3yo0l7HY3Xf3aC3-g-3mlCOCOAF4F3R4EUf84uT3r0uUQwwcU5awGULw_-CxJQhEsqF_DtX-A2zmlZYmEwJbhhYoEuD5BNMefkunvLGHSJr8u19enay8Trh0lP_PG8D4AyeZJjWmlKVdnV-38CupuHYXK_poV8dSC3eYrpHiWs4Zg0xcubQ78zUZs--axvv5dwAJJLJhT9Dcqv0I0</recordid><startdate>20080304</startdate><enddate>20080304</enddate><creator>Cho, Myung Soo</creator><creator>Lee, Young-Eun</creator><creator>Kim, Ji Young</creator><creator>Chung, Seungsoo</creator><creator>Cho, Yoon Hee</creator><creator>Kim, Dae-Sung</creator><creator>Kang, Sang-Moon</creator><creator>Lee, Haksup</creator><creator>Kim, Myung-Hwa</creator><creator>Kim, Jeong-Hoon</creator><creator>Leem, Joong Woo</creator><creator>Oh, Sun Kyung</creator><creator>Choi, Young Min</creator><creator>Hwang, Dong-Youn</creator><creator>Chang, Jin Woo</creator><creator>Kim, Dong-Wook</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080304</creationdate><title>Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells</title><author>Cho, Myung Soo ; Lee, Young-Eun ; Kim, Ji Young ; Chung, Seungsoo ; Cho, Yoon Hee ; Kim, Dae-Sung ; Kang, Sang-Moon ; Lee, Haksup ; Kim, Myung-Hwa ; Kim, Jeong-Hoon ; Leem, Joong Woo ; Oh, Sun Kyung ; Choi, Young Min ; Hwang, Dong-Youn ; Chang, Jin Woo ; Kim, Dong-Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c616t-3513b0f791918842b0b7784107306358ead9ec3b634b767875437687bcc05b323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Biological Sciences</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Differentiation</topic><topic>Cell lines</topic><topic>Cell Transplantation</topic><topic>Disease Models, Animal</topic><topic>Dopamine</topic><topic>Embryonic stem cells</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Feeder cells</topic><topic>Humans</topic><topic>Methods</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - transplantation</topic><topic>Neurotransmitters</topic><topic>Parkinson Disease - therapy</topic><topic>Rats</topic><topic>Rodents</topic><topic>Rotation</topic><topic>Stem cells</topic><topic>Studies</topic><topic>Tissue grafting</topic><topic>Transplantation</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Myung Soo</creatorcontrib><creatorcontrib>Lee, Young-Eun</creatorcontrib><creatorcontrib>Kim, Ji Young</creatorcontrib><creatorcontrib>Chung, Seungsoo</creatorcontrib><creatorcontrib>Cho, Yoon Hee</creatorcontrib><creatorcontrib>Kim, Dae-Sung</creatorcontrib><creatorcontrib>Kang, Sang-Moon</creatorcontrib><creatorcontrib>Lee, Haksup</creatorcontrib><creatorcontrib>Kim, Myung-Hwa</creatorcontrib><creatorcontrib>Kim, Jeong-Hoon</creatorcontrib><creatorcontrib>Leem, Joong Woo</creatorcontrib><creatorcontrib>Oh, Sun Kyung</creatorcontrib><creatorcontrib>Choi, Young Min</creatorcontrib><creatorcontrib>Hwang, Dong-Youn</creatorcontrib><creatorcontrib>Chang, Jin Woo</creatorcontrib><creatorcontrib>Kim, Dong-Wook</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Myung Soo</au><au>Lee, Young-Eun</au><au>Kim, Ji Young</au><au>Chung, Seungsoo</au><au>Cho, Yoon Hee</au><au>Kim, Dae-Sung</au><au>Kang, Sang-Moon</au><au>Lee, Haksup</au><au>Kim, Myung-Hwa</au><au>Kim, Jeong-Hoon</au><au>Leem, Joong Woo</au><au>Oh, Sun Kyung</au><au>Choi, Young Min</au><au>Hwang, Dong-Youn</au><au>Chang, Jin Woo</au><au>Kim, Dong-Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-03-04</date><risdate>2008</risdate><volume>105</volume><issue>9</issue><spage>3392</spage><epage>3397</epage><pages>3392-3397</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We developed a method for the efficient generation of functional dopaminergic (DA) neurons from human embryonic stem cells (hESCs) on a large scale. The most unique feature of this method is the generation of homogeneous spherical neural masses (SNMs) from the hESC-derived neural precursors. These SNMs provide several advantages: (i) they can be passaged for a long time without losing their differentiation capability into DA neurons; (ii) they can be coaxed into DA neurons at much higher efficiency than that from previous reports (86% tyrosine hydroxylase-positive neurons/total neurons); (iii) the induction of DA neurons from SNMs only takes 14 days; and (iv) no feeder cells are required during differentiation. These advantages allowed us to obtain a large number of DA neurons within a short time period and minimized potential contamination of unwanted cells or pathogens coming from the feeder layer. The highly efficient differentiation may not only enhance the efficacy of the cell therapy but also reduce the potential tumor formation from the undifferentiated residual hESCs. In line with this effect, we have never observed any tumor formation from the transplanted animals used in our study. When grafted into a parkinsonian rat model, the hESC-derived DA neurons elicited clear behavioral recovery in three behavioral tests. In summary, our study paves the way for the large-scale generation of purer and functional DA neurons for future clinical applications.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18305158</pmid><doi>10.1073/pnas.0712359105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2008-03, Vol.105 (9), p.3392-3397
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2265201
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animal models
Animals
Antibodies
Biological Sciences
Cell Culture Techniques - methods
Cell Differentiation
Cell lines
Cell Transplantation
Disease Models, Animal
Dopamine
Embryonic stem cells
Embryonic Stem Cells - cytology
Feeder cells
Humans
Methods
Neurons
Neurons - cytology
Neurons - transplantation
Neurotransmitters
Parkinson Disease - therapy
Rats
Rodents
Rotation
Stem cells
Studies
Tissue grafting
Transplantation
Tumors
title Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A44%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20efficient%20and%20large-scale%20generation%20of%20functional%20dopamine%20neurons%20from%20human%20embryonic%20stem%20cells&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Cho,%20Myung%20Soo&rft.date=2008-03-04&rft.volume=105&rft.issue=9&rft.spage=3392&rft.epage=3397&rft.pages=3392-3397&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0712359105&rft_dat=%3Cjstor_pubme%3E25461245%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201321457&rft_id=info:pmid/18305158&rft_jstor_id=25461245&rfr_iscdi=true