RNA polymerase factory: a robotic in vitro assembly platform for high-throughput production of recombinant protein complexes
The in-depth structure/function analysis of large protein complexes, such as RNA polymerases (RNAPs), requires an experimental platform capable of assembling variants of such enzymes in large numbers in a reproducible manner under defined in vitro conditions. Here we describe a streamlined and integ...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2008-01, Vol.36 (1), p.245-252 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The in-depth structure/function analysis of large protein complexes, such as RNA polymerases (RNAPs), requires an experimental platform capable of assembling variants of such enzymes in large numbers in a reproducible manner under defined in vitro conditions. Here we describe a streamlined and integrated protocol for assembling recombinant archaeal RNAPs in a high-throughput 96-well format. All aspects of the procedure including construction of redesigned expression plasmids, development of automated protein extraction/in vitro assembly methods and activity assays were specifically adapted for implementation on robotic platforms. The optimized strategy allows the parallel assembly and activity assay of 96 recombinant RNAPs (including wild-type and mutant variants) with little or no human intervention within 24 h. We demonstrate the high-throughput potential of this system by evaluating the side-chain requirements of a single amino acid position of the RNAP Bridge Helix using saturation mutagenesis. |
---|---|
ISSN: | 0305-1048 1362-4962 |
DOI: | 10.1093/nar/gkm1044 |