Arabidopsis AtOPT3 Protein Functions in Metal Homeostasis and Movement of Iron to Developing Seeds
The Arabidopsis thaliana AtOPT3 belongs to the oligopeptide transporter (OPT) family, a relatively poorly characterized family of peptide/modified peptide transporters found in archebacteria, bacteria, fungi, and plants. A null mutation in AtOPT3 resulted in embryo lethality, indicating an essential...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2008-02, Vol.146 (2), p.589-601 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 601 |
---|---|
container_issue | 2 |
container_start_page | 589 |
container_title | Plant physiology (Bethesda) |
container_volume | 146 |
creator | Stacey, Minviluz G Patel, Ami McClain, William E Mathieu, Melanie Remley, Melissa Rogers, Elizabeth E Gassmann, Walter Blevins, Dale G Stacey, Gary |
description | The Arabidopsis thaliana AtOPT3 belongs to the oligopeptide transporter (OPT) family, a relatively poorly characterized family of peptide/modified peptide transporters found in archebacteria, bacteria, fungi, and plants. A null mutation in AtOPT3 resulted in embryo lethality, indicating an essential role for AtOPT3 in embryo development. In this article, we report on the isolation and phenotypic characterization of a second AtOPT3 mutant line, opt3-2, harboring a T-DNA insertion in the 5' untranslated region of AtOPT3. The T-DNA insertion in the AtOPT3 promoter resulted in reduced but sufficient AtOPT3 expression to allow embryo formation in opt3-2 homozygous seeds. Phenotypic analyses of opt3-2 plants revealed three interesting loss-of-function phenotypes associated with iron metabolism. First, reduced AtOPT3 expression in opt3-2 plants resulted in the constitutive expression of root iron deficiency responses regardless of exogenous iron supply. Second, deregulation of root iron uptake processes in opt3-2 roots resulted in the accumulation of very high levels of iron in opt3-2 tissues. Hyperaccumulation of iron in opt3-2 resulted in the formation of brown necrotic areas in opt3-2 leaves and was more pronounced during the seed-filling stage. Third, reduced AtOPT3 expression resulted in decreased accumulation of iron in opt3-2 seeds. The reduced accumulation of iron in opt3-2 seeds is especially noteworthy considering the excessively high levels of accumulated iron in other opt3-2 tissues. AtOPT3, therefore, plays a critical role in two important aspects of iron metabolism, namely, maintenance of whole-plant iron homeostasis and iron nutrition of developing seeds. |
doi_str_mv | 10.1104/pp.107.108183 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2245856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40065865</jstor_id><sourcerecordid>40065865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-44453dd7f524ac4219ab7032cfc1e1832c8960986926d3ecacdf7cf3f19cce963</originalsourceid><addsrcrecordid>eNqFks9rFDEcxYModq0ePaq56G3qN78mmYuwVGsLLS20PYdsJlmnzCZjkl3wvzfLLKuePIR8w_vw-D5eEHpL4IwQ4J-n6YyArEcRxZ6hBRGMNlRw9RwtAOoMSnUn6FXOTwBAGOEv0QlRoJjs1AKtlsmshj5Oech4WW7vHhi-S7G4IeCLbbBliCHj-rhxxYz4Mm5czMXsaRN6fBN3buNCwdHjqxQDLhF_dTs3xmkIa3zvXJ9foxfejNm9Odyn6PHi28P5ZXN9-_3qfHndWNHx0nDOBet76QXlxnJKOrOSNYD1lriajVrVtdCptqNtz5w1tvfSeuZJZ63rWnaKvsy-03a1cb2tayUz6ikNG5N-6WgG_a8Shh96HXeaUi6U2Bt8Ohik-HPrctGbIVs3jia4uM1aAm2VatV_QQqqJZLICjYzaFPMOTl_3IaA3tenp6mOUs_1Vf793xH-0Ie-KvDxAJhszeiTCXbIR44CKBBAK_du5p5yiemoc4BWqFZU_cOsexO1Wafq8XhP6_eoBqLtQLLfnhi2aQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20861717</pqid></control><display><type>article</type><title>Arabidopsis AtOPT3 Protein Functions in Metal Homeostasis and Movement of Iron to Developing Seeds</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Stacey, Minviluz G ; Patel, Ami ; McClain, William E ; Mathieu, Melanie ; Remley, Melissa ; Rogers, Elizabeth E ; Gassmann, Walter ; Blevins, Dale G ; Stacey, Gary</creator><creatorcontrib>Stacey, Minviluz G ; Patel, Ami ; McClain, William E ; Mathieu, Melanie ; Remley, Melissa ; Rogers, Elizabeth E ; Gassmann, Walter ; Blevins, Dale G ; Stacey, Gary</creatorcontrib><description>The Arabidopsis thaliana AtOPT3 belongs to the oligopeptide transporter (OPT) family, a relatively poorly characterized family of peptide/modified peptide transporters found in archebacteria, bacteria, fungi, and plants. A null mutation in AtOPT3 resulted in embryo lethality, indicating an essential role for AtOPT3 in embryo development. In this article, we report on the isolation and phenotypic characterization of a second AtOPT3 mutant line, opt3-2, harboring a T-DNA insertion in the 5' untranslated region of AtOPT3. The T-DNA insertion in the AtOPT3 promoter resulted in reduced but sufficient AtOPT3 expression to allow embryo formation in opt3-2 homozygous seeds. Phenotypic analyses of opt3-2 plants revealed three interesting loss-of-function phenotypes associated with iron metabolism. First, reduced AtOPT3 expression in opt3-2 plants resulted in the constitutive expression of root iron deficiency responses regardless of exogenous iron supply. Second, deregulation of root iron uptake processes in opt3-2 roots resulted in the accumulation of very high levels of iron in opt3-2 tissues. Hyperaccumulation of iron in opt3-2 resulted in the formation of brown necrotic areas in opt3-2 leaves and was more pronounced during the seed-filling stage. Third, reduced AtOPT3 expression resulted in decreased accumulation of iron in opt3-2 seeds. The reduced accumulation of iron in opt3-2 seeds is especially noteworthy considering the excessively high levels of accumulated iron in other opt3-2 tissues. AtOPT3, therefore, plays a critical role in two important aspects of iron metabolism, namely, maintenance of whole-plant iron homeostasis and iron nutrition of developing seeds.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.107.108183</identifier><identifier>PMID: 18083798</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Alleles ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biological and medical sciences ; Biological Transport - physiology ; Embryos ; Enviromental Stress and Adaptation to Stress ; Flowers - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Plant - physiology ; Genetic Complementation Test ; Germination and dormancy ; Homeostasis ; Homeostasis - physiology ; Iron - metabolism ; Leaves ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Mesophyll cells ; Metals - metabolism ; Mutation ; Phenotypes ; Plant cells ; Plant Leaves - cytology ; Plant Leaves - metabolism ; Plant physiology and development ; Plant roots ; Plants ; Seedlings ; Seedlings - metabolism ; Seeds ; Seeds - growth & development</subject><ispartof>Plant physiology (Bethesda), 2008-02, Vol.146 (2), p.589-601</ispartof><rights>Copyright 2008 American Society of Plant Biologists</rights><rights>2008 INIST-CNRS</rights><rights>Copyright © 2008, American Society of Plant Biologists</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-44453dd7f524ac4219ab7032cfc1e1832c8960986926d3ecacdf7cf3f19cce963</citedby><cites>FETCH-LOGICAL-c594t-44453dd7f524ac4219ab7032cfc1e1832c8960986926d3ecacdf7cf3f19cce963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40065865$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40065865$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20080502$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18083798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stacey, Minviluz G</creatorcontrib><creatorcontrib>Patel, Ami</creatorcontrib><creatorcontrib>McClain, William E</creatorcontrib><creatorcontrib>Mathieu, Melanie</creatorcontrib><creatorcontrib>Remley, Melissa</creatorcontrib><creatorcontrib>Rogers, Elizabeth E</creatorcontrib><creatorcontrib>Gassmann, Walter</creatorcontrib><creatorcontrib>Blevins, Dale G</creatorcontrib><creatorcontrib>Stacey, Gary</creatorcontrib><title>Arabidopsis AtOPT3 Protein Functions in Metal Homeostasis and Movement of Iron to Developing Seeds</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The Arabidopsis thaliana AtOPT3 belongs to the oligopeptide transporter (OPT) family, a relatively poorly characterized family of peptide/modified peptide transporters found in archebacteria, bacteria, fungi, and plants. A null mutation in AtOPT3 resulted in embryo lethality, indicating an essential role for AtOPT3 in embryo development. In this article, we report on the isolation and phenotypic characterization of a second AtOPT3 mutant line, opt3-2, harboring a T-DNA insertion in the 5' untranslated region of AtOPT3. The T-DNA insertion in the AtOPT3 promoter resulted in reduced but sufficient AtOPT3 expression to allow embryo formation in opt3-2 homozygous seeds. Phenotypic analyses of opt3-2 plants revealed three interesting loss-of-function phenotypes associated with iron metabolism. First, reduced AtOPT3 expression in opt3-2 plants resulted in the constitutive expression of root iron deficiency responses regardless of exogenous iron supply. Second, deregulation of root iron uptake processes in opt3-2 roots resulted in the accumulation of very high levels of iron in opt3-2 tissues. Hyperaccumulation of iron in opt3-2 resulted in the formation of brown necrotic areas in opt3-2 leaves and was more pronounced during the seed-filling stage. Third, reduced AtOPT3 expression resulted in decreased accumulation of iron in opt3-2 seeds. The reduced accumulation of iron in opt3-2 seeds is especially noteworthy considering the excessively high levels of accumulated iron in other opt3-2 tissues. AtOPT3, therefore, plays a critical role in two important aspects of iron metabolism, namely, maintenance of whole-plant iron homeostasis and iron nutrition of developing seeds.</description><subject>Alleles</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biological and medical sciences</subject><subject>Biological Transport - physiology</subject><subject>Embryos</subject><subject>Enviromental Stress and Adaptation to Stress</subject><subject>Flowers - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>Genetic Complementation Test</subject><subject>Germination and dormancy</subject><subject>Homeostasis</subject><subject>Homeostasis - physiology</subject><subject>Iron - metabolism</subject><subject>Leaves</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Mesophyll cells</subject><subject>Metals - metabolism</subject><subject>Mutation</subject><subject>Phenotypes</subject><subject>Plant cells</subject><subject>Plant Leaves - cytology</subject><subject>Plant Leaves - metabolism</subject><subject>Plant physiology and development</subject><subject>Plant roots</subject><subject>Plants</subject><subject>Seedlings</subject><subject>Seedlings - metabolism</subject><subject>Seeds</subject><subject>Seeds - growth & development</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks9rFDEcxYModq0ePaq56G3qN78mmYuwVGsLLS20PYdsJlmnzCZjkl3wvzfLLKuePIR8w_vw-D5eEHpL4IwQ4J-n6YyArEcRxZ6hBRGMNlRw9RwtAOoMSnUn6FXOTwBAGOEv0QlRoJjs1AKtlsmshj5Oech4WW7vHhi-S7G4IeCLbbBliCHj-rhxxYz4Mm5czMXsaRN6fBN3buNCwdHjqxQDLhF_dTs3xmkIa3zvXJ9foxfejNm9Odyn6PHi28P5ZXN9-_3qfHndWNHx0nDOBet76QXlxnJKOrOSNYD1lriajVrVtdCptqNtz5w1tvfSeuZJZ63rWnaKvsy-03a1cb2tayUz6ikNG5N-6WgG_a8Shh96HXeaUi6U2Bt8Ohik-HPrctGbIVs3jia4uM1aAm2VatV_QQqqJZLICjYzaFPMOTl_3IaA3tenp6mOUs_1Vf793xH-0Ie-KvDxAJhszeiTCXbIR44CKBBAK_du5p5yiemoc4BWqFZU_cOsexO1Wafq8XhP6_eoBqLtQLLfnhi2aQ</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Stacey, Minviluz G</creator><creator>Patel, Ami</creator><creator>McClain, William E</creator><creator>Mathieu, Melanie</creator><creator>Remley, Melissa</creator><creator>Rogers, Elizabeth E</creator><creator>Gassmann, Walter</creator><creator>Blevins, Dale G</creator><creator>Stacey, Gary</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>M7N</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080201</creationdate><title>Arabidopsis AtOPT3 Protein Functions in Metal Homeostasis and Movement of Iron to Developing Seeds</title><author>Stacey, Minviluz G ; Patel, Ami ; McClain, William E ; Mathieu, Melanie ; Remley, Melissa ; Rogers, Elizabeth E ; Gassmann, Walter ; Blevins, Dale G ; Stacey, Gary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-44453dd7f524ac4219ab7032cfc1e1832c8960986926d3ecacdf7cf3f19cce963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alleles</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biological and medical sciences</topic><topic>Biological Transport - physiology</topic><topic>Embryos</topic><topic>Enviromental Stress and Adaptation to Stress</topic><topic>Flowers - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>Genetic Complementation Test</topic><topic>Germination and dormancy</topic><topic>Homeostasis</topic><topic>Homeostasis - physiology</topic><topic>Iron - metabolism</topic><topic>Leaves</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Mesophyll cells</topic><topic>Metals - metabolism</topic><topic>Mutation</topic><topic>Phenotypes</topic><topic>Plant cells</topic><topic>Plant Leaves - cytology</topic><topic>Plant Leaves - metabolism</topic><topic>Plant physiology and development</topic><topic>Plant roots</topic><topic>Plants</topic><topic>Seedlings</topic><topic>Seedlings - metabolism</topic><topic>Seeds</topic><topic>Seeds - growth & development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stacey, Minviluz G</creatorcontrib><creatorcontrib>Patel, Ami</creatorcontrib><creatorcontrib>McClain, William E</creatorcontrib><creatorcontrib>Mathieu, Melanie</creatorcontrib><creatorcontrib>Remley, Melissa</creatorcontrib><creatorcontrib>Rogers, Elizabeth E</creatorcontrib><creatorcontrib>Gassmann, Walter</creatorcontrib><creatorcontrib>Blevins, Dale G</creatorcontrib><creatorcontrib>Stacey, Gary</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stacey, Minviluz G</au><au>Patel, Ami</au><au>McClain, William E</au><au>Mathieu, Melanie</au><au>Remley, Melissa</au><au>Rogers, Elizabeth E</au><au>Gassmann, Walter</au><au>Blevins, Dale G</au><au>Stacey, Gary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arabidopsis AtOPT3 Protein Functions in Metal Homeostasis and Movement of Iron to Developing Seeds</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2008-02-01</date><risdate>2008</risdate><volume>146</volume><issue>2</issue><spage>589</spage><epage>601</epage><pages>589-601</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>The Arabidopsis thaliana AtOPT3 belongs to the oligopeptide transporter (OPT) family, a relatively poorly characterized family of peptide/modified peptide transporters found in archebacteria, bacteria, fungi, and plants. A null mutation in AtOPT3 resulted in embryo lethality, indicating an essential role for AtOPT3 in embryo development. In this article, we report on the isolation and phenotypic characterization of a second AtOPT3 mutant line, opt3-2, harboring a T-DNA insertion in the 5' untranslated region of AtOPT3. The T-DNA insertion in the AtOPT3 promoter resulted in reduced but sufficient AtOPT3 expression to allow embryo formation in opt3-2 homozygous seeds. Phenotypic analyses of opt3-2 plants revealed three interesting loss-of-function phenotypes associated with iron metabolism. First, reduced AtOPT3 expression in opt3-2 plants resulted in the constitutive expression of root iron deficiency responses regardless of exogenous iron supply. Second, deregulation of root iron uptake processes in opt3-2 roots resulted in the accumulation of very high levels of iron in opt3-2 tissues. Hyperaccumulation of iron in opt3-2 resulted in the formation of brown necrotic areas in opt3-2 leaves and was more pronounced during the seed-filling stage. Third, reduced AtOPT3 expression resulted in decreased accumulation of iron in opt3-2 seeds. The reduced accumulation of iron in opt3-2 seeds is especially noteworthy considering the excessively high levels of accumulated iron in other opt3-2 tissues. AtOPT3, therefore, plays a critical role in two important aspects of iron metabolism, namely, maintenance of whole-plant iron homeostasis and iron nutrition of developing seeds.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>18083798</pmid><doi>10.1104/pp.107.108183</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2008-02, Vol.146 (2), p.589-601 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2245856 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Alleles Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Biological and medical sciences Biological Transport - physiology Embryos Enviromental Stress and Adaptation to Stress Flowers - metabolism Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Plant - physiology Genetic Complementation Test Germination and dormancy Homeostasis Homeostasis - physiology Iron - metabolism Leaves Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism Mesophyll cells Metals - metabolism Mutation Phenotypes Plant cells Plant Leaves - cytology Plant Leaves - metabolism Plant physiology and development Plant roots Plants Seedlings Seedlings - metabolism Seeds Seeds - growth & development |
title | Arabidopsis AtOPT3 Protein Functions in Metal Homeostasis and Movement of Iron to Developing Seeds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A08%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arabidopsis%20AtOPT3%20Protein%20Functions%20in%20Metal%20Homeostasis%20and%20Movement%20of%20Iron%20to%20Developing%20Seeds&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Stacey,%20Minviluz%20G&rft.date=2008-02-01&rft.volume=146&rft.issue=2&rft.spage=589&rft.epage=601&rft.pages=589-601&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.107.108183&rft_dat=%3Cjstor_pubme%3E40065865%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20861717&rft_id=info:pmid/18083798&rft_jstor_id=40065865&rfr_iscdi=true |