Turning off the G2 DNA damage checkpoint
In response to DNA damage, cells activate checkpoints to delay cell cycle progression and allow time for completion of DNA repair before commitment to S-phase or mitosis. During G2, many proteins collaborate to activate Chk1, an effector protein kinase that ensures the mitotic cyclin-dependent kinas...
Gespeichert in:
Veröffentlicht in: | DNA repair 2008-02, Vol.7 (2), p.136-140 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 140 |
---|---|
container_issue | 2 |
container_start_page | 136 |
container_title | DNA repair |
container_volume | 7 |
creator | Calonge, Teresa M. O’Connell, Matthew J. |
description | In response to DNA damage, cells activate checkpoints to delay cell cycle progression and allow time for completion of DNA repair before commitment to S-phase or mitosis. During G2, many proteins collaborate to activate Chk1, an effector protein kinase that ensures the mitotic cyclin-dependent kinase remains in an inactive state. This checkpoint is ancient in origin and highly conserved from fission yeast to humans. Work from many groups has led to a detailed description of the spatiotemporal control of signaling events leading to Chk1 activation. However, to survive DNA damage in G2, the checkpoint must be inactivated to allow resumption of cell cycling and entry into mitosis. Though only beginning to be understood, here we review current data regarding checkpoint termination signals acting on Chk1 and its’ upstream regulators. |
doi_str_mv | 10.1016/j.dnarep.2007.07.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2233850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1568786407002698</els_id><sourcerecordid>20882093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-21417e8e65fc057fdd7d7273104e8184ef4475a5647d4db03f55aeabe47bc4d03</originalsourceid><addsrcrecordid>eNqFkU9LAzEQxYMoWqvfQGQvipfWJJts0otQ6l8oeqnnkCaTNnWbrclW8Nu7S0vVi8LADOQ3j8l7CJ0R3CeYFNeLvg06wqpPMRb9tojYQx3CC9kTkhf7u7lgR-g4pQXGhIuiOERHpAEIyWUHXU3WMfgwyyrnsnoO2QPNbp-HmdVLPYPMzMG8rSof6hN04HSZ4HTbu-j1_m4yeuyNXx6eRsNxz3BK6x4ljAiQUHBnMBfOWmEFFTnBDCSRDBxjgmteMGGZneLcca5BT4GJqWEW5110s9FdradLsAZCHXWpVtEvdfxUlfbq90vwczWrPhSleS55K3C5FYjV-xpSrZY-GShLHaBaJyUwGUgpBv-CFEtJ8SBvQLYBTaxSiuB21xCs2izUQm2yUG0Wqi0imrXznz_5Xtqa3wAXW0Ano0sXdTA-7bhGCw84F9-WQOP7h4eokvEQDFgfwdTKVv7vS74A9amoFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20882093</pqid></control><display><type>article</type><title>Turning off the G2 DNA damage checkpoint</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Calonge, Teresa M. ; O’Connell, Matthew J.</creator><creatorcontrib>Calonge, Teresa M. ; O’Connell, Matthew J.</creatorcontrib><description>In response to DNA damage, cells activate checkpoints to delay cell cycle progression and allow time for completion of DNA repair before commitment to S-phase or mitosis. During G2, many proteins collaborate to activate Chk1, an effector protein kinase that ensures the mitotic cyclin-dependent kinase remains in an inactive state. This checkpoint is ancient in origin and highly conserved from fission yeast to humans. Work from many groups has led to a detailed description of the spatiotemporal control of signaling events leading to Chk1 activation. However, to survive DNA damage in G2, the checkpoint must be inactivated to allow resumption of cell cycling and entry into mitosis. Though only beginning to be understood, here we review current data regarding checkpoint termination signals acting on Chk1 and its’ upstream regulators.</description><identifier>ISSN: 1568-7864</identifier><identifier>EISSN: 1568-7856</identifier><identifier>DOI: 10.1016/j.dnarep.2007.07.017</identifier><identifier>PMID: 17851138</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bacteriology ; Biological and medical sciences ; Cell cycle, cell proliferation ; Cell physiology ; Checkpoint ; Checkpoint Kinase 1 ; Chk1 ; DNA Damage - physiology ; Fundamental and applied biological sciences. Psychology ; G2 Phase - physiology ; Gene Expression Regulation - physiology ; Genes, cdc - physiology ; Growth, nutrition, cell differenciation ; Microbiology ; Molecular and cellular biology ; Molecular genetics ; Mutagenesis. Repair ; Phosphorylation ; Protein kinase ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Protein Kinases - physiology ; Protein phosphatase ; Schizosaccharomyces pombe ; Ubiquitin-dependent proteolysis</subject><ispartof>DNA repair, 2008-02, Vol.7 (2), p.136-140</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-21417e8e65fc057fdd7d7273104e8184ef4475a5647d4db03f55aeabe47bc4d03</citedby><cites>FETCH-LOGICAL-c522t-21417e8e65fc057fdd7d7273104e8184ef4475a5647d4db03f55aeabe47bc4d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dnarep.2007.07.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20009557$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17851138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Calonge, Teresa M.</creatorcontrib><creatorcontrib>O’Connell, Matthew J.</creatorcontrib><title>Turning off the G2 DNA damage checkpoint</title><title>DNA repair</title><addtitle>DNA Repair (Amst)</addtitle><description>In response to DNA damage, cells activate checkpoints to delay cell cycle progression and allow time for completion of DNA repair before commitment to S-phase or mitosis. During G2, many proteins collaborate to activate Chk1, an effector protein kinase that ensures the mitotic cyclin-dependent kinase remains in an inactive state. This checkpoint is ancient in origin and highly conserved from fission yeast to humans. Work from many groups has led to a detailed description of the spatiotemporal control of signaling events leading to Chk1 activation. However, to survive DNA damage in G2, the checkpoint must be inactivated to allow resumption of cell cycling and entry into mitosis. Though only beginning to be understood, here we review current data regarding checkpoint termination signals acting on Chk1 and its’ upstream regulators.</description><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Cell cycle, cell proliferation</subject><subject>Cell physiology</subject><subject>Checkpoint</subject><subject>Checkpoint Kinase 1</subject><subject>Chk1</subject><subject>DNA Damage - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>G2 Phase - physiology</subject><subject>Gene Expression Regulation - physiology</subject><subject>Genes, cdc - physiology</subject><subject>Growth, nutrition, cell differenciation</subject><subject>Microbiology</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Mutagenesis. Repair</subject><subject>Phosphorylation</subject><subject>Protein kinase</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Protein Kinases - physiology</subject><subject>Protein phosphatase</subject><subject>Schizosaccharomyces pombe</subject><subject>Ubiquitin-dependent proteolysis</subject><issn>1568-7864</issn><issn>1568-7856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9LAzEQxYMoWqvfQGQvipfWJJts0otQ6l8oeqnnkCaTNnWbrclW8Nu7S0vVi8LADOQ3j8l7CJ0R3CeYFNeLvg06wqpPMRb9tojYQx3CC9kTkhf7u7lgR-g4pQXGhIuiOERHpAEIyWUHXU3WMfgwyyrnsnoO2QPNbp-HmdVLPYPMzMG8rSof6hN04HSZ4HTbu-j1_m4yeuyNXx6eRsNxz3BK6x4ljAiQUHBnMBfOWmEFFTnBDCSRDBxjgmteMGGZneLcca5BT4GJqWEW5110s9FdradLsAZCHXWpVtEvdfxUlfbq90vwczWrPhSleS55K3C5FYjV-xpSrZY-GShLHaBaJyUwGUgpBv-CFEtJ8SBvQLYBTaxSiuB21xCs2izUQm2yUG0Wqi0imrXznz_5Xtqa3wAXW0Ano0sXdTA-7bhGCw84F9-WQOP7h4eokvEQDFgfwdTKVv7vS74A9amoFw</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Calonge, Teresa M.</creator><creator>O’Connell, Matthew J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>M7N</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080201</creationdate><title>Turning off the G2 DNA damage checkpoint</title><author>Calonge, Teresa M. ; O’Connell, Matthew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-21417e8e65fc057fdd7d7273104e8184ef4475a5647d4db03f55aeabe47bc4d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Cell cycle, cell proliferation</topic><topic>Cell physiology</topic><topic>Checkpoint</topic><topic>Checkpoint Kinase 1</topic><topic>Chk1</topic><topic>DNA Damage - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>G2 Phase - physiology</topic><topic>Gene Expression Regulation - physiology</topic><topic>Genes, cdc - physiology</topic><topic>Growth, nutrition, cell differenciation</topic><topic>Microbiology</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Mutagenesis. Repair</topic><topic>Phosphorylation</topic><topic>Protein kinase</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Protein Kinases - physiology</topic><topic>Protein phosphatase</topic><topic>Schizosaccharomyces pombe</topic><topic>Ubiquitin-dependent proteolysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calonge, Teresa M.</creatorcontrib><creatorcontrib>O’Connell, Matthew J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>DNA repair</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calonge, Teresa M.</au><au>O’Connell, Matthew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turning off the G2 DNA damage checkpoint</atitle><jtitle>DNA repair</jtitle><addtitle>DNA Repair (Amst)</addtitle><date>2008-02-01</date><risdate>2008</risdate><volume>7</volume><issue>2</issue><spage>136</spage><epage>140</epage><pages>136-140</pages><issn>1568-7864</issn><eissn>1568-7856</eissn><abstract>In response to DNA damage, cells activate checkpoints to delay cell cycle progression and allow time for completion of DNA repair before commitment to S-phase or mitosis. During G2, many proteins collaborate to activate Chk1, an effector protein kinase that ensures the mitotic cyclin-dependent kinase remains in an inactive state. This checkpoint is ancient in origin and highly conserved from fission yeast to humans. Work from many groups has led to a detailed description of the spatiotemporal control of signaling events leading to Chk1 activation. However, to survive DNA damage in G2, the checkpoint must be inactivated to allow resumption of cell cycling and entry into mitosis. Though only beginning to be understood, here we review current data regarding checkpoint termination signals acting on Chk1 and its’ upstream regulators.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>17851138</pmid><doi>10.1016/j.dnarep.2007.07.017</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1568-7864 |
ispartof | DNA repair, 2008-02, Vol.7 (2), p.136-140 |
issn | 1568-7864 1568-7856 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2233850 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Bacteriology Biological and medical sciences Cell cycle, cell proliferation Cell physiology Checkpoint Checkpoint Kinase 1 Chk1 DNA Damage - physiology Fundamental and applied biological sciences. Psychology G2 Phase - physiology Gene Expression Regulation - physiology Genes, cdc - physiology Growth, nutrition, cell differenciation Microbiology Molecular and cellular biology Molecular genetics Mutagenesis. Repair Phosphorylation Protein kinase Protein Kinases - genetics Protein Kinases - metabolism Protein Kinases - physiology Protein phosphatase Schizosaccharomyces pombe Ubiquitin-dependent proteolysis |
title | Turning off the G2 DNA damage checkpoint |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T07%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turning%20off%20the%20G2%20DNA%20damage%20checkpoint&rft.jtitle=DNA%20repair&rft.au=Calonge,%20Teresa%20M.&rft.date=2008-02-01&rft.volume=7&rft.issue=2&rft.spage=136&rft.epage=140&rft.pages=136-140&rft.issn=1568-7864&rft.eissn=1568-7856&rft_id=info:doi/10.1016/j.dnarep.2007.07.017&rft_dat=%3Cproquest_pubme%3E20882093%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20882093&rft_id=info:pmid/17851138&rft_els_id=S1568786407002698&rfr_iscdi=true |