Medical data mining: knowledge discovery in a clinical data warehouse

Clinical databases have accumulated large quantities of information about patients and their medical conditions. Relationships and patterns within this data could provide new medical knowledge. Unfortunately, few methodologies have been developed and applied to discover this hidden knowledge. In thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings - AMIA Annual Fall Symposium 1997, p.101-105
Hauptverfasser: Prather, J C, Lobach, D F, Goodwin, L K, Hales, J W, Hage, M L, Hammond, W E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue
container_start_page 101
container_title Proceedings - AMIA Annual Fall Symposium
container_volume
creator Prather, J C
Lobach, D F
Goodwin, L K
Hales, J W
Hage, M L
Hammond, W E
description Clinical databases have accumulated large quantities of information about patients and their medical conditions. Relationships and patterns within this data could provide new medical knowledge. Unfortunately, few methodologies have been developed and applied to discover this hidden knowledge. In this study, the techniques of data mining (also known as Knowledge Discovery in Databases) were used to search for relationships in a large clinical database. Specifically, data accumulated on 3,902 obstetrical patients were evaluated for factors potentially contributing to preterm birth using exploratory factor analysis. Three factors were identified by the investigators for further exploration. This paper describes the processes involved in mining a clinical database including data warehousing, data query and cleaning, and data analysis.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2233405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79390747</sourcerecordid><originalsourceid>FETCH-LOGICAL-p329t-d53538c517f1918304bc94bf0ee2b0ef9b22cf34c54b8a53761dbf6904d507e83</originalsourceid><addsrcrecordid>eNpVkEtLAzEUhbNQaq3-BCErdwN5TiYuBCn1ARU3ug553GmjmUydmbb03ztgKbq6i_PxHc49Q1NKNC0qVpELdNn3n4SUlNBygiaaSyW1mqLFK4TobcLBDhY3Mce8usNfud0nCCvAIfa-3UF3wDFji30aiRO-tx2s220PV-i8tqmH6-OdoY_Hxfv8uVi-Pb3MH5bFhjM9FEFyySsvqaqpphUnwnktXE0AmCNQa8eYr7nwUrjKSq5KGlxdaiKCJAoqPkP3v97N1jUQPOShs8lsutjY7mBaG83_JMe1WbU7wxjngshRcHsUdO33FvrBNONASMlmGIcYpbkmSqgRvPnbdKo4Po7_AGj0afM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79390747</pqid></control><display><type>article</type><title>Medical data mining: knowledge discovery in a clinical data warehouse</title><source>MEDLINE</source><source>PubMed Central</source><creator>Prather, J C ; Lobach, D F ; Goodwin, L K ; Hales, J W ; Hage, M L ; Hammond, W E</creator><creatorcontrib>Prather, J C ; Lobach, D F ; Goodwin, L K ; Hales, J W ; Hage, M L ; Hammond, W E</creatorcontrib><description>Clinical databases have accumulated large quantities of information about patients and their medical conditions. Relationships and patterns within this data could provide new medical knowledge. Unfortunately, few methodologies have been developed and applied to discover this hidden knowledge. In this study, the techniques of data mining (also known as Knowledge Discovery in Databases) were used to search for relationships in a large clinical database. Specifically, data accumulated on 3,902 obstetrical patients were evaluated for factors potentially contributing to preterm birth using exploratory factor analysis. Three factors were identified by the investigators for further exploration. This paper describes the processes involved in mining a clinical database including data warehousing, data query and cleaning, and data analysis.</description><identifier>ISSN: 1091-8280</identifier><identifier>PMID: 9357597</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Data Interpretation, Statistical ; Databases, Factual ; Factor Analysis, Statistical ; Female ; Humans ; Medical Records Systems, Computerized ; Perinatal Care ; Pregnancy - statistics &amp; numerical data ; Pregnancy Outcome</subject><ispartof>Proceedings - AMIA Annual Fall Symposium, 1997, p.101-105</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2233405/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2233405/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9357597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prather, J C</creatorcontrib><creatorcontrib>Lobach, D F</creatorcontrib><creatorcontrib>Goodwin, L K</creatorcontrib><creatorcontrib>Hales, J W</creatorcontrib><creatorcontrib>Hage, M L</creatorcontrib><creatorcontrib>Hammond, W E</creatorcontrib><title>Medical data mining: knowledge discovery in a clinical data warehouse</title><title>Proceedings - AMIA Annual Fall Symposium</title><addtitle>Proc AMIA Annu Fall Symp</addtitle><description>Clinical databases have accumulated large quantities of information about patients and their medical conditions. Relationships and patterns within this data could provide new medical knowledge. Unfortunately, few methodologies have been developed and applied to discover this hidden knowledge. In this study, the techniques of data mining (also known as Knowledge Discovery in Databases) were used to search for relationships in a large clinical database. Specifically, data accumulated on 3,902 obstetrical patients were evaluated for factors potentially contributing to preterm birth using exploratory factor analysis. Three factors were identified by the investigators for further exploration. This paper describes the processes involved in mining a clinical database including data warehousing, data query and cleaning, and data analysis.</description><subject>Data Interpretation, Statistical</subject><subject>Databases, Factual</subject><subject>Factor Analysis, Statistical</subject><subject>Female</subject><subject>Humans</subject><subject>Medical Records Systems, Computerized</subject><subject>Perinatal Care</subject><subject>Pregnancy - statistics &amp; numerical data</subject><subject>Pregnancy Outcome</subject><issn>1091-8280</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkEtLAzEUhbNQaq3-BCErdwN5TiYuBCn1ARU3ug553GmjmUydmbb03ztgKbq6i_PxHc49Q1NKNC0qVpELdNn3n4SUlNBygiaaSyW1mqLFK4TobcLBDhY3Mce8usNfud0nCCvAIfa-3UF3wDFji30aiRO-tx2s220PV-i8tqmH6-OdoY_Hxfv8uVi-Pb3MH5bFhjM9FEFyySsvqaqpphUnwnktXE0AmCNQa8eYr7nwUrjKSq5KGlxdaiKCJAoqPkP3v97N1jUQPOShs8lsutjY7mBaG83_JMe1WbU7wxjngshRcHsUdO33FvrBNONASMlmGIcYpbkmSqgRvPnbdKo4Po7_AGj0afM</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Prather, J C</creator><creator>Lobach, D F</creator><creator>Goodwin, L K</creator><creator>Hales, J W</creator><creator>Hage, M L</creator><creator>Hammond, W E</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>1997</creationdate><title>Medical data mining: knowledge discovery in a clinical data warehouse</title><author>Prather, J C ; Lobach, D F ; Goodwin, L K ; Hales, J W ; Hage, M L ; Hammond, W E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p329t-d53538c517f1918304bc94bf0ee2b0ef9b22cf34c54b8a53761dbf6904d507e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Data Interpretation, Statistical</topic><topic>Databases, Factual</topic><topic>Factor Analysis, Statistical</topic><topic>Female</topic><topic>Humans</topic><topic>Medical Records Systems, Computerized</topic><topic>Perinatal Care</topic><topic>Pregnancy - statistics &amp; numerical data</topic><topic>Pregnancy Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prather, J C</creatorcontrib><creatorcontrib>Lobach, D F</creatorcontrib><creatorcontrib>Goodwin, L K</creatorcontrib><creatorcontrib>Hales, J W</creatorcontrib><creatorcontrib>Hage, M L</creatorcontrib><creatorcontrib>Hammond, W E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings - AMIA Annual Fall Symposium</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prather, J C</au><au>Lobach, D F</au><au>Goodwin, L K</au><au>Hales, J W</au><au>Hage, M L</au><au>Hammond, W E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Medical data mining: knowledge discovery in a clinical data warehouse</atitle><jtitle>Proceedings - AMIA Annual Fall Symposium</jtitle><addtitle>Proc AMIA Annu Fall Symp</addtitle><date>1997</date><risdate>1997</risdate><spage>101</spage><epage>105</epage><pages>101-105</pages><issn>1091-8280</issn><abstract>Clinical databases have accumulated large quantities of information about patients and their medical conditions. Relationships and patterns within this data could provide new medical knowledge. Unfortunately, few methodologies have been developed and applied to discover this hidden knowledge. In this study, the techniques of data mining (also known as Knowledge Discovery in Databases) were used to search for relationships in a large clinical database. Specifically, data accumulated on 3,902 obstetrical patients were evaluated for factors potentially contributing to preterm birth using exploratory factor analysis. Three factors were identified by the investigators for further exploration. This paper describes the processes involved in mining a clinical database including data warehousing, data query and cleaning, and data analysis.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>9357597</pmid><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1091-8280
ispartof Proceedings - AMIA Annual Fall Symposium, 1997, p.101-105
issn 1091-8280
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2233405
source MEDLINE; PubMed Central
subjects Data Interpretation, Statistical
Databases, Factual
Factor Analysis, Statistical
Female
Humans
Medical Records Systems, Computerized
Perinatal Care
Pregnancy - statistics & numerical data
Pregnancy Outcome
title Medical data mining: knowledge discovery in a clinical data warehouse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Medical%20data%20mining:%20knowledge%20discovery%20in%20a%20clinical%20data%20warehouse&rft.jtitle=Proceedings%20-%20AMIA%20Annual%20Fall%20Symposium&rft.au=Prather,%20J%20C&rft.date=1997&rft.spage=101&rft.epage=105&rft.pages=101-105&rft.issn=1091-8280&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E79390747%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79390747&rft_id=info:pmid/9357597&rfr_iscdi=true