Using data mining to characterize DNA mutations by patient clinical features

In most hereditary cancer syndromes, finding a correspondence between various genetic mutations within a gene (genotype) and a patient's clinical cancer history (phenotype) is challenging; to date there are few clinically meaningful correlations between specific DNA intragenic mutations and cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings - AMIA Annual Fall Symposium 1997, p.253-257
Hauptverfasser: Evans, S, Lemon, S J, Deters, C, Fusaro, R M, Durham, C, Snyder, C, Lynch, H T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 257
container_issue
container_start_page 253
container_title Proceedings - AMIA Annual Fall Symposium
container_volume
creator Evans, S
Lemon, S J
Deters, C
Fusaro, R M
Durham, C
Snyder, C
Lynch, H T
description In most hereditary cancer syndromes, finding a correspondence between various genetic mutations within a gene (genotype) and a patient's clinical cancer history (phenotype) is challenging; to date there are few clinically meaningful correlations between specific DNA intragenic mutations and corresponding cancer types. To define possible genotype and phenotype correlations, we evaluated the application of data mining methodology whereby the clinical cancer histories of gene-mutation-positive patients were used to define valid or "true" patterns for a specific DNA intragenic mutation. The clinical histories of patients with their corresponding detailed attributes without the same oncologic intragenic mutation were labeled incorrect or "false" patterns. The results of data mining technology yielded characterizing rules for the true cases that constituted clinical features which predicted the intragenic mutation. Some of the initial results derived correlations already independently known in the literature, adding to the confidence of using this methodological approach.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2233315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79388906</sourcerecordid><originalsourceid>FETCH-LOGICAL-p329t-20f8b9276cbaf88ed8f5e246acf56e2fdad6cff725e66ba412ff2f37984d00ef3</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxXNQaq3-CUJO3haySTebXIRSP6HoxZ7DbHbSRvbLJCvUv94Vi-hpHryZ33vMCZnnTOeZ4oqdkfMY3xiTOcvljMy0KErJyznZbKPvdrSGBLT13bdOPbV7CGATBv-J9PZ5RdsxQfJ9F2l1oMMksUvUNtOBhYY6hDQGjBfk1EET8fI4F2R7f_e6fsw2Lw9P69UmGwTXKePMqUrzUtoKnFJYK1cgX0qwrpDIXQ21tM6VvEApK1jm3DnuRKnVsmYMnViQmx_uMFYt1nYqE6AxQ_AthIPpwZv_Tuf3Ztd_GM6FEHkxAa6PgNC_jxiTaX202DTQYT9GU2qhlGZyWrz6m_Qbcfyf-ALl824X</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79388906</pqid></control><display><type>article</type><title>Using data mining to characterize DNA mutations by patient clinical features</title><source>MEDLINE</source><source>PubMed Central</source><creator>Evans, S ; Lemon, S J ; Deters, C ; Fusaro, R M ; Durham, C ; Snyder, C ; Lynch, H T</creator><creatorcontrib>Evans, S ; Lemon, S J ; Deters, C ; Fusaro, R M ; Durham, C ; Snyder, C ; Lynch, H T</creatorcontrib><description>In most hereditary cancer syndromes, finding a correspondence between various genetic mutations within a gene (genotype) and a patient's clinical cancer history (phenotype) is challenging; to date there are few clinically meaningful correlations between specific DNA intragenic mutations and corresponding cancer types. To define possible genotype and phenotype correlations, we evaluated the application of data mining methodology whereby the clinical cancer histories of gene-mutation-positive patients were used to define valid or "true" patterns for a specific DNA intragenic mutation. The clinical histories of patients with their corresponding detailed attributes without the same oncologic intragenic mutation were labeled incorrect or "false" patterns. The results of data mining technology yielded characterizing rules for the true cases that constituted clinical features which predicted the intragenic mutation. Some of the initial results derived correlations already independently known in the literature, adding to the confidence of using this methodological approach.</description><identifier>ISSN: 1091-8280</identifier><identifier>PMID: 9357627</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Age of Onset ; Algorithms ; BRCA2 Protein ; Breast Neoplasms - epidemiology ; Breast Neoplasms - genetics ; Family ; Female ; Genes, BRCA1 ; Humans ; Mathematical Computing ; Mutation ; Neoplasm Proteins - genetics ; Ovarian Neoplasms - epidemiology ; Ovarian Neoplasms - genetics ; Software ; Transcription Factors - genetics</subject><ispartof>Proceedings - AMIA Annual Fall Symposium, 1997, p.253-257</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2233315/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2233315/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9357627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Evans, S</creatorcontrib><creatorcontrib>Lemon, S J</creatorcontrib><creatorcontrib>Deters, C</creatorcontrib><creatorcontrib>Fusaro, R M</creatorcontrib><creatorcontrib>Durham, C</creatorcontrib><creatorcontrib>Snyder, C</creatorcontrib><creatorcontrib>Lynch, H T</creatorcontrib><title>Using data mining to characterize DNA mutations by patient clinical features</title><title>Proceedings - AMIA Annual Fall Symposium</title><addtitle>Proc AMIA Annu Fall Symp</addtitle><description>In most hereditary cancer syndromes, finding a correspondence between various genetic mutations within a gene (genotype) and a patient's clinical cancer history (phenotype) is challenging; to date there are few clinically meaningful correlations between specific DNA intragenic mutations and corresponding cancer types. To define possible genotype and phenotype correlations, we evaluated the application of data mining methodology whereby the clinical cancer histories of gene-mutation-positive patients were used to define valid or "true" patterns for a specific DNA intragenic mutation. The clinical histories of patients with their corresponding detailed attributes without the same oncologic intragenic mutation were labeled incorrect or "false" patterns. The results of data mining technology yielded characterizing rules for the true cases that constituted clinical features which predicted the intragenic mutation. Some of the initial results derived correlations already independently known in the literature, adding to the confidence of using this methodological approach.</description><subject>Age of Onset</subject><subject>Algorithms</subject><subject>BRCA2 Protein</subject><subject>Breast Neoplasms - epidemiology</subject><subject>Breast Neoplasms - genetics</subject><subject>Family</subject><subject>Female</subject><subject>Genes, BRCA1</subject><subject>Humans</subject><subject>Mathematical Computing</subject><subject>Mutation</subject><subject>Neoplasm Proteins - genetics</subject><subject>Ovarian Neoplasms - epidemiology</subject><subject>Ovarian Neoplasms - genetics</subject><subject>Software</subject><subject>Transcription Factors - genetics</subject><issn>1091-8280</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkM1LAzEQxXNQaq3-CUJO3haySTebXIRSP6HoxZ7DbHbSRvbLJCvUv94Vi-hpHryZ33vMCZnnTOeZ4oqdkfMY3xiTOcvljMy0KErJyznZbKPvdrSGBLT13bdOPbV7CGATBv-J9PZ5RdsxQfJ9F2l1oMMksUvUNtOBhYY6hDQGjBfk1EET8fI4F2R7f_e6fsw2Lw9P69UmGwTXKePMqUrzUtoKnFJYK1cgX0qwrpDIXQ21tM6VvEApK1jm3DnuRKnVsmYMnViQmx_uMFYt1nYqE6AxQ_AthIPpwZv_Tuf3Ztd_GM6FEHkxAa6PgNC_jxiTaX202DTQYT9GU2qhlGZyWrz6m_Qbcfyf-ALl824X</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Evans, S</creator><creator>Lemon, S J</creator><creator>Deters, C</creator><creator>Fusaro, R M</creator><creator>Durham, C</creator><creator>Snyder, C</creator><creator>Lynch, H T</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>1997</creationdate><title>Using data mining to characterize DNA mutations by patient clinical features</title><author>Evans, S ; Lemon, S J ; Deters, C ; Fusaro, R M ; Durham, C ; Snyder, C ; Lynch, H T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p329t-20f8b9276cbaf88ed8f5e246acf56e2fdad6cff725e66ba412ff2f37984d00ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Age of Onset</topic><topic>Algorithms</topic><topic>BRCA2 Protein</topic><topic>Breast Neoplasms - epidemiology</topic><topic>Breast Neoplasms - genetics</topic><topic>Family</topic><topic>Female</topic><topic>Genes, BRCA1</topic><topic>Humans</topic><topic>Mathematical Computing</topic><topic>Mutation</topic><topic>Neoplasm Proteins - genetics</topic><topic>Ovarian Neoplasms - epidemiology</topic><topic>Ovarian Neoplasms - genetics</topic><topic>Software</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evans, S</creatorcontrib><creatorcontrib>Lemon, S J</creatorcontrib><creatorcontrib>Deters, C</creatorcontrib><creatorcontrib>Fusaro, R M</creatorcontrib><creatorcontrib>Durham, C</creatorcontrib><creatorcontrib>Snyder, C</creatorcontrib><creatorcontrib>Lynch, H T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings - AMIA Annual Fall Symposium</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evans, S</au><au>Lemon, S J</au><au>Deters, C</au><au>Fusaro, R M</au><au>Durham, C</au><au>Snyder, C</au><au>Lynch, H T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using data mining to characterize DNA mutations by patient clinical features</atitle><jtitle>Proceedings - AMIA Annual Fall Symposium</jtitle><addtitle>Proc AMIA Annu Fall Symp</addtitle><date>1997</date><risdate>1997</risdate><spage>253</spage><epage>257</epage><pages>253-257</pages><issn>1091-8280</issn><abstract>In most hereditary cancer syndromes, finding a correspondence between various genetic mutations within a gene (genotype) and a patient's clinical cancer history (phenotype) is challenging; to date there are few clinically meaningful correlations between specific DNA intragenic mutations and corresponding cancer types. To define possible genotype and phenotype correlations, we evaluated the application of data mining methodology whereby the clinical cancer histories of gene-mutation-positive patients were used to define valid or "true" patterns for a specific DNA intragenic mutation. The clinical histories of patients with their corresponding detailed attributes without the same oncologic intragenic mutation were labeled incorrect or "false" patterns. The results of data mining technology yielded characterizing rules for the true cases that constituted clinical features which predicted the intragenic mutation. Some of the initial results derived correlations already independently known in the literature, adding to the confidence of using this methodological approach.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>9357627</pmid><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1091-8280
ispartof Proceedings - AMIA Annual Fall Symposium, 1997, p.253-257
issn 1091-8280
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2233315
source MEDLINE; PubMed Central
subjects Age of Onset
Algorithms
BRCA2 Protein
Breast Neoplasms - epidemiology
Breast Neoplasms - genetics
Family
Female
Genes, BRCA1
Humans
Mathematical Computing
Mutation
Neoplasm Proteins - genetics
Ovarian Neoplasms - epidemiology
Ovarian Neoplasms - genetics
Software
Transcription Factors - genetics
title Using data mining to characterize DNA mutations by patient clinical features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A24%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20data%20mining%20to%20characterize%20DNA%20mutations%20by%20patient%20clinical%20features&rft.jtitle=Proceedings%20-%20AMIA%20Annual%20Fall%20Symposium&rft.au=Evans,%20S&rft.date=1997&rft.spage=253&rft.epage=257&rft.pages=253-257&rft.issn=1091-8280&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E79388906%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79388906&rft_id=info:pmid/9357627&rfr_iscdi=true