Gene-Based Sequence Diversity Analysis of Field Pea (Pisum)
Sequence diversity of 39 dispersed gene loci was analyzed in 48 diverse individuals representative of the genus Pisum. The different genes show large variation in diversity parameters, suggesting widely differing levels of selection and a high overall diversity level for the species. The data set yi...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2007-12, Vol.177 (4), p.2263-2275 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2275 |
---|---|
container_issue | 4 |
container_start_page | 2263 |
container_title | Genetics (Austin) |
container_volume | 177 |
creator | Jing, R Johnson, R Seres, A Kiss, G Ambrose, M.J Knox, M.R Ellis, T.H.N Flavell, A.J |
description | Sequence diversity of 39 dispersed gene loci was analyzed in 48 diverse individuals representative of the genus Pisum. The different genes show large variation in diversity parameters, suggesting widely differing levels of selection and a high overall diversity level for the species. The data set yields a genetic diversity tree whose deep branches, involving wild samples, are preserved in a tree derived from a polymorphic retrotransposon insertions in an identical sample set. Thus, gene regions and intergenic "junk DNA" share a consistent picture for the genomic diversity of Pisum, despite low linkage disequilibrium in wild and landrace germplasm, which might be expected to allow independent evolution of these very different DNA classes. Additional lines of evidence indicate that recombination has shuffled gene haplotypes efficiently within Pisum, despite its high level of inbreeding and widespread geographic distribution. Trees derived from individual gene loci show marked differences from each other, and genetic distance values between sample pairs show high standard deviations. Sequence mosaic analysis of aligned sequences identifies nine loci showing evidence for intragenic recombination. Lastly, phylogenetic network analysis confirms the non-treelike structure of Pisum diversity and indicates the major germplasm classes involved. Overall, these data emphasize the artificiality of simple tree structures for representing genomic sequence variation within Pisum and emphasize the need for fine structure haplotype analysis to accurately define the genetic structure of the species. |
doi_str_mv | 10.1534/genetics.107.081323 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2219474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1405207731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-5467a9721cc183b067c0e548acf54335ef5b57d6f4fdd0738f75afcf828a3d3d3</originalsourceid><addsrcrecordid>eNpdkdtrFDEUxoModlv9CwQdfPDyMGvO5DoIQlttFQoWap9DNnOymzKXNpnpsv-9KbNeyUMg-Z2P830fIS-ALkEw_mGNPY7BpSVQtaQaWMUekQXUnJWVZPCYLCgFWUrF4IAcpnRDKZW10E_JAWiqGGewIB_Ps0p5YhM2xRXeTdg7LD6He4wpjLviuLftLoVUDL44C9g2xSXa4t1lSFP3_hl54m2b8Pn-PiLXZ19-nH4tL76ffzs9vigd13IsBZfK1qoC50CzFZXKURRcW-cFZ0ygFyuhGum5b5q8l_ZKWO-8rrRlTT5H5NOsezutOmwc9mO0rbmNobNxZwYbzL8_fdiY9XBvqiqnoXgWeLMXiEO2mEbTheSwbW2Pw5SMrKkUissMvv4PvBmmmDNIpgIOTAGoDLEZcnFIKaL_vQlQ89CM-dVMflBmbiZPvfzbxJ-ZfRUZeDsDm7DebENEkzrbthkHs91uQSnDsyP5IPVqJr0djF3HkMz1VUWBUVpTnWNjPwGoe6Gj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214137117</pqid></control><display><type>article</type><title>Gene-Based Sequence Diversity Analysis of Field Pea (Pisum)</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Jing, R ; Johnson, R ; Seres, A ; Kiss, G ; Ambrose, M.J ; Knox, M.R ; Ellis, T.H.N ; Flavell, A.J</creator><creatorcontrib>Jing, R ; Johnson, R ; Seres, A ; Kiss, G ; Ambrose, M.J ; Knox, M.R ; Ellis, T.H.N ; Flavell, A.J</creatorcontrib><description>Sequence diversity of 39 dispersed gene loci was analyzed in 48 diverse individuals representative of the genus Pisum. The different genes show large variation in diversity parameters, suggesting widely differing levels of selection and a high overall diversity level for the species. The data set yields a genetic diversity tree whose deep branches, involving wild samples, are preserved in a tree derived from a polymorphic retrotransposon insertions in an identical sample set. Thus, gene regions and intergenic "junk DNA" share a consistent picture for the genomic diversity of Pisum, despite low linkage disequilibrium in wild and landrace germplasm, which might be expected to allow independent evolution of these very different DNA classes. Additional lines of evidence indicate that recombination has shuffled gene haplotypes efficiently within Pisum, despite its high level of inbreeding and widespread geographic distribution. Trees derived from individual gene loci show marked differences from each other, and genetic distance values between sample pairs show high standard deviations. Sequence mosaic analysis of aligned sequences identifies nine loci showing evidence for intragenic recombination. Lastly, phylogenetic network analysis confirms the non-treelike structure of Pisum diversity and indicates the major germplasm classes involved. Overall, these data emphasize the artificiality of simple tree structures for representing genomic sequence variation within Pisum and emphasize the need for fine structure haplotype analysis to accurately define the genetic structure of the species.</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.107.081323</identifier><identifier>PMID: 18073431</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Soc America</publisher><subject>Base Sequence ; Collections ; cultivars ; Gene banks ; genes ; Genes, Plant ; genetic distance ; Genetic diversity ; genetic recombination ; Genetic Variation ; genotype ; germplasm ; Investigations ; linkage (genetics) ; Linkage Disequilibrium ; loci ; Methods ; Molecular Sequence Data ; nucleotide sequences ; Phylogeny ; Pisum sativum ; Pisum sativum - genetics ; Recombination, Genetic ; Retroelements ; Selection, Genetic ; Studies ; Trees</subject><ispartof>Genetics (Austin), 2007-12, Vol.177 (4), p.2263-2275</ispartof><rights>Copyright Genetics Society of America Dec 2007</rights><rights>Copyright © 2007 by the Genetics Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-5467a9721cc183b067c0e548acf54335ef5b57d6f4fdd0738f75afcf828a3d3d3</citedby><cites>FETCH-LOGICAL-c486t-5467a9721cc183b067c0e548acf54335ef5b57d6f4fdd0738f75afcf828a3d3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18073431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jing, R</creatorcontrib><creatorcontrib>Johnson, R</creatorcontrib><creatorcontrib>Seres, A</creatorcontrib><creatorcontrib>Kiss, G</creatorcontrib><creatorcontrib>Ambrose, M.J</creatorcontrib><creatorcontrib>Knox, M.R</creatorcontrib><creatorcontrib>Ellis, T.H.N</creatorcontrib><creatorcontrib>Flavell, A.J</creatorcontrib><title>Gene-Based Sequence Diversity Analysis of Field Pea (Pisum)</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Sequence diversity of 39 dispersed gene loci was analyzed in 48 diverse individuals representative of the genus Pisum. The different genes show large variation in diversity parameters, suggesting widely differing levels of selection and a high overall diversity level for the species. The data set yields a genetic diversity tree whose deep branches, involving wild samples, are preserved in a tree derived from a polymorphic retrotransposon insertions in an identical sample set. Thus, gene regions and intergenic "junk DNA" share a consistent picture for the genomic diversity of Pisum, despite low linkage disequilibrium in wild and landrace germplasm, which might be expected to allow independent evolution of these very different DNA classes. Additional lines of evidence indicate that recombination has shuffled gene haplotypes efficiently within Pisum, despite its high level of inbreeding and widespread geographic distribution. Trees derived from individual gene loci show marked differences from each other, and genetic distance values between sample pairs show high standard deviations. Sequence mosaic analysis of aligned sequences identifies nine loci showing evidence for intragenic recombination. Lastly, phylogenetic network analysis confirms the non-treelike structure of Pisum diversity and indicates the major germplasm classes involved. Overall, these data emphasize the artificiality of simple tree structures for representing genomic sequence variation within Pisum and emphasize the need for fine structure haplotype analysis to accurately define the genetic structure of the species.</description><subject>Base Sequence</subject><subject>Collections</subject><subject>cultivars</subject><subject>Gene banks</subject><subject>genes</subject><subject>Genes, Plant</subject><subject>genetic distance</subject><subject>Genetic diversity</subject><subject>genetic recombination</subject><subject>Genetic Variation</subject><subject>genotype</subject><subject>germplasm</subject><subject>Investigations</subject><subject>linkage (genetics)</subject><subject>Linkage Disequilibrium</subject><subject>loci</subject><subject>Methods</subject><subject>Molecular Sequence Data</subject><subject>nucleotide sequences</subject><subject>Phylogeny</subject><subject>Pisum sativum</subject><subject>Pisum sativum - genetics</subject><subject>Recombination, Genetic</subject><subject>Retroelements</subject><subject>Selection, Genetic</subject><subject>Studies</subject><subject>Trees</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkdtrFDEUxoModlv9CwQdfPDyMGvO5DoIQlttFQoWap9DNnOymzKXNpnpsv-9KbNeyUMg-Z2P830fIS-ALkEw_mGNPY7BpSVQtaQaWMUekQXUnJWVZPCYLCgFWUrF4IAcpnRDKZW10E_JAWiqGGewIB_Ps0p5YhM2xRXeTdg7LD6He4wpjLviuLftLoVUDL44C9g2xSXa4t1lSFP3_hl54m2b8Pn-PiLXZ19-nH4tL76ffzs9vigd13IsBZfK1qoC50CzFZXKURRcW-cFZ0ygFyuhGum5b5q8l_ZKWO-8rrRlTT5H5NOsezutOmwc9mO0rbmNobNxZwYbzL8_fdiY9XBvqiqnoXgWeLMXiEO2mEbTheSwbW2Pw5SMrKkUissMvv4PvBmmmDNIpgIOTAGoDLEZcnFIKaL_vQlQ89CM-dVMflBmbiZPvfzbxJ-ZfRUZeDsDm7DebENEkzrbthkHs91uQSnDsyP5IPVqJr0djF3HkMz1VUWBUVpTnWNjPwGoe6Gj</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Jing, R</creator><creator>Johnson, R</creator><creator>Seres, A</creator><creator>Kiss, G</creator><creator>Ambrose, M.J</creator><creator>Knox, M.R</creator><creator>Ellis, T.H.N</creator><creator>Flavell, A.J</creator><general>Genetics Soc America</general><general>Genetics Society of America</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20071201</creationdate><title>Gene-Based Sequence Diversity Analysis of Field Pea (Pisum)</title><author>Jing, R ; Johnson, R ; Seres, A ; Kiss, G ; Ambrose, M.J ; Knox, M.R ; Ellis, T.H.N ; Flavell, A.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-5467a9721cc183b067c0e548acf54335ef5b57d6f4fdd0738f75afcf828a3d3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Base Sequence</topic><topic>Collections</topic><topic>cultivars</topic><topic>Gene banks</topic><topic>genes</topic><topic>Genes, Plant</topic><topic>genetic distance</topic><topic>Genetic diversity</topic><topic>genetic recombination</topic><topic>Genetic Variation</topic><topic>genotype</topic><topic>germplasm</topic><topic>Investigations</topic><topic>linkage (genetics)</topic><topic>Linkage Disequilibrium</topic><topic>loci</topic><topic>Methods</topic><topic>Molecular Sequence Data</topic><topic>nucleotide sequences</topic><topic>Phylogeny</topic><topic>Pisum sativum</topic><topic>Pisum sativum - genetics</topic><topic>Recombination, Genetic</topic><topic>Retroelements</topic><topic>Selection, Genetic</topic><topic>Studies</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jing, R</creatorcontrib><creatorcontrib>Johnson, R</creatorcontrib><creatorcontrib>Seres, A</creatorcontrib><creatorcontrib>Kiss, G</creatorcontrib><creatorcontrib>Ambrose, M.J</creatorcontrib><creatorcontrib>Knox, M.R</creatorcontrib><creatorcontrib>Ellis, T.H.N</creatorcontrib><creatorcontrib>Flavell, A.J</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jing, R</au><au>Johnson, R</au><au>Seres, A</au><au>Kiss, G</au><au>Ambrose, M.J</au><au>Knox, M.R</au><au>Ellis, T.H.N</au><au>Flavell, A.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene-Based Sequence Diversity Analysis of Field Pea (Pisum)</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2007-12-01</date><risdate>2007</risdate><volume>177</volume><issue>4</issue><spage>2263</spage><epage>2275</epage><pages>2263-2275</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>Sequence diversity of 39 dispersed gene loci was analyzed in 48 diverse individuals representative of the genus Pisum. The different genes show large variation in diversity parameters, suggesting widely differing levels of selection and a high overall diversity level for the species. The data set yields a genetic diversity tree whose deep branches, involving wild samples, are preserved in a tree derived from a polymorphic retrotransposon insertions in an identical sample set. Thus, gene regions and intergenic "junk DNA" share a consistent picture for the genomic diversity of Pisum, despite low linkage disequilibrium in wild and landrace germplasm, which might be expected to allow independent evolution of these very different DNA classes. Additional lines of evidence indicate that recombination has shuffled gene haplotypes efficiently within Pisum, despite its high level of inbreeding and widespread geographic distribution. Trees derived from individual gene loci show marked differences from each other, and genetic distance values between sample pairs show high standard deviations. Sequence mosaic analysis of aligned sequences identifies nine loci showing evidence for intragenic recombination. Lastly, phylogenetic network analysis confirms the non-treelike structure of Pisum diversity and indicates the major germplasm classes involved. Overall, these data emphasize the artificiality of simple tree structures for representing genomic sequence variation within Pisum and emphasize the need for fine structure haplotype analysis to accurately define the genetic structure of the species.</abstract><cop>United States</cop><pub>Genetics Soc America</pub><pmid>18073431</pmid><doi>10.1534/genetics.107.081323</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-6731 |
ispartof | Genetics (Austin), 2007-12, Vol.177 (4), p.2263-2275 |
issn | 0016-6731 1943-2631 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2219474 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Base Sequence Collections cultivars Gene banks genes Genes, Plant genetic distance Genetic diversity genetic recombination Genetic Variation genotype germplasm Investigations linkage (genetics) Linkage Disequilibrium loci Methods Molecular Sequence Data nucleotide sequences Phylogeny Pisum sativum Pisum sativum - genetics Recombination, Genetic Retroelements Selection, Genetic Studies Trees |
title | Gene-Based Sequence Diversity Analysis of Field Pea (Pisum) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T05%3A31%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene-Based%20Sequence%20Diversity%20Analysis%20of%20Field%20Pea%20(Pisum)&rft.jtitle=Genetics%20(Austin)&rft.au=Jing,%20R&rft.date=2007-12-01&rft.volume=177&rft.issue=4&rft.spage=2263&rft.epage=2275&rft.pages=2263-2275&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.107.081323&rft_dat=%3Cproquest_pubme%3E1405207731%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214137117&rft_id=info:pmid/18073431&rfr_iscdi=true |