Conformational change of erythroid α‐spectrin at the tetramerization site upon binding β‐spectrin

We previously determined the solution structures of the first 156 residues of human erythroid α‐spectrin (SpαI‐1–156, or simply Spα). Spα consists of the tetramerization site of α‐spectrin and associates with a model β‐spectrin protein (Spβ) with an affinity similar to that of native α‐ and β‐spectr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2007-11, Vol.16 (11), p.2519-2530
Hauptverfasser: Long, Fei, McElheny, Dan, Jiang, Shaokai, Park, Sunghyouk, Caffrey, Michael S., Fung, Leslie W.‐M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2530
container_issue 11
container_start_page 2519
container_title Protein science
container_volume 16
creator Long, Fei
McElheny, Dan
Jiang, Shaokai
Park, Sunghyouk
Caffrey, Michael S.
Fung, Leslie W.‐M.
description We previously determined the solution structures of the first 156 residues of human erythroid α‐spectrin (SpαI‐1–156, or simply Spα). Spα consists of the tetramerization site of α‐spectrin and associates with a model β‐spectrin protein (Spβ) with an affinity similar to that of native α‐ and β‐spectrin. Upon αβ−complex formation, our previous results indicate that there is an increase in helicity in the complex, suggesting conformational change in either Spα or Spβ or in both. We have now used isothermal titration calorimetry, circular dichroism, static and dynamic light scattering, and solution NMR methods to investigate properties of the complex as well as the conformation of Spα in the complex. The results reveal a highly asymmetric complex, with a Perrin shape parameter of 1.23, which could correspond to a prolate ellipsoid with a major axis of about five and a minor axis of about one. We identified 12 residues, five prior to and seven following the partial domain helix in Spα that moved freely relative to the structural domain in the absence of Spβ but when in the complex moved with a mobility similar to that of the structural domain. Thus, it appears that the association with Spβ induced an unstructured‐to‐helical conformational transition in these residues to produce a rigid and asymmetric complex. Our findings may provide insight toward understanding different association affinities of αβ−spectrin at the tetramerization site for erythroid and non‐erythroid spectrin and a possible mechanism to understand some of the clinical mutations, such as L49F of α‐spectrin, which occur outside the functional partial domain region.
doi_str_mv 10.1110/ps.073115307
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2211704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68440778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4269-fa5bd034000741f4501ff258ef6be6839ced27c16e25bd1c044c0274d9f8dfe83</originalsourceid><addsrcrecordid>eNp9kUFuFDEQRS0EIkNgxxp5xSoTXLbb7t4goREEpEhBCCR2lsddnjHqbje2J2iy4gi5Chwkh-Ak6WRGIWxYVUn1_q8vfUKeAzsGAPZqzMdMC4BKMP2AzECqZl436utDMmONgnktVH1AnuT8jTEmgYvH5AB0w6paVDOyWsTBx9TbEuJgO-rWdlghjZ5i2pZ1iqGlV7_-_LzMI7qSwkBtoWWNtGBJtscULm6lNIeCdDNO2zIMbRhW9Or3PdlT8sjbLuOz_TwkX969_bx4Pz89O_mweHM6d5JPwb2tli0TcoqqJXhZMfCeVzV6tURVi8Zhy7UDhXwCwTEpHeNato2vW4-1OCSvd77jZtlj63CYYnZmTKG3aWuiDebfyxDWZhXPDecAmsnJ4OXeIMXvG8zF9CE77Do7YNxko2opmdY3n452oEsx54T-7gkwc9OMGbO5a2bCX9wP9hfeVzEBYgf8CB1u_2tmPn46A8UraMQ17U2fig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68440778</pqid></control><display><type>article</type><title>Conformational change of erythroid α‐spectrin at the tetramerization site upon binding β‐spectrin</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Long, Fei ; McElheny, Dan ; Jiang, Shaokai ; Park, Sunghyouk ; Caffrey, Michael S. ; Fung, Leslie W.‐M.</creator><creatorcontrib>Long, Fei ; McElheny, Dan ; Jiang, Shaokai ; Park, Sunghyouk ; Caffrey, Michael S. ; Fung, Leslie W.‐M.</creatorcontrib><description>We previously determined the solution structures of the first 156 residues of human erythroid α‐spectrin (SpαI‐1–156, or simply Spα). Spα consists of the tetramerization site of α‐spectrin and associates with a model β‐spectrin protein (Spβ) with an affinity similar to that of native α‐ and β‐spectrin. Upon αβ−complex formation, our previous results indicate that there is an increase in helicity in the complex, suggesting conformational change in either Spα or Spβ or in both. We have now used isothermal titration calorimetry, circular dichroism, static and dynamic light scattering, and solution NMR methods to investigate properties of the complex as well as the conformation of Spα in the complex. The results reveal a highly asymmetric complex, with a Perrin shape parameter of 1.23, which could correspond to a prolate ellipsoid with a major axis of about five and a minor axis of about one. We identified 12 residues, five prior to and seven following the partial domain helix in Spα that moved freely relative to the structural domain in the absence of Spβ but when in the complex moved with a mobility similar to that of the structural domain. Thus, it appears that the association with Spβ induced an unstructured‐to‐helical conformational transition in these residues to produce a rigid and asymmetric complex. Our findings may provide insight toward understanding different association affinities of αβ−spectrin at the tetramerization site for erythroid and non‐erythroid spectrin and a possible mechanism to understand some of the clinical mutations, such as L49F of α‐spectrin, which occur outside the functional partial domain region.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1110/ps.073115307</identifier><identifier>PMID: 17905835</identifier><language>eng</language><publisher>Bristol: Cold Spring Harbor Laboratory Press</publisher><subject>Calorimetry - methods ; Chromatography - methods ; Circular Dichroism ; Erythrocytes - metabolism ; erythroid spectrin ; Humans ; Magnetic Resonance Spectroscopy - methods ; Models, Statistical ; Molecular Weight ; prolate ellipsoid ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins - chemistry ; Scattering, Radiation ; Spectrin - chemistry ; tetramer ; αβ‐complex</subject><ispartof>Protein science, 2007-11, Vol.16 (11), p.2519-2530</ispartof><rights>Copyright © 2007 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4269-fa5bd034000741f4501ff258ef6be6839ced27c16e25bd1c044c0274d9f8dfe83</citedby><cites>FETCH-LOGICAL-c4269-fa5bd034000741f4501ff258ef6be6839ced27c16e25bd1c044c0274d9f8dfe83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2211704/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2211704/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17905835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Long, Fei</creatorcontrib><creatorcontrib>McElheny, Dan</creatorcontrib><creatorcontrib>Jiang, Shaokai</creatorcontrib><creatorcontrib>Park, Sunghyouk</creatorcontrib><creatorcontrib>Caffrey, Michael S.</creatorcontrib><creatorcontrib>Fung, Leslie W.‐M.</creatorcontrib><title>Conformational change of erythroid α‐spectrin at the tetramerization site upon binding β‐spectrin</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>We previously determined the solution structures of the first 156 residues of human erythroid α‐spectrin (SpαI‐1–156, or simply Spα). Spα consists of the tetramerization site of α‐spectrin and associates with a model β‐spectrin protein (Spβ) with an affinity similar to that of native α‐ and β‐spectrin. Upon αβ−complex formation, our previous results indicate that there is an increase in helicity in the complex, suggesting conformational change in either Spα or Spβ or in both. We have now used isothermal titration calorimetry, circular dichroism, static and dynamic light scattering, and solution NMR methods to investigate properties of the complex as well as the conformation of Spα in the complex. The results reveal a highly asymmetric complex, with a Perrin shape parameter of 1.23, which could correspond to a prolate ellipsoid with a major axis of about five and a minor axis of about one. We identified 12 residues, five prior to and seven following the partial domain helix in Spα that moved freely relative to the structural domain in the absence of Spβ but when in the complex moved with a mobility similar to that of the structural domain. Thus, it appears that the association with Spβ induced an unstructured‐to‐helical conformational transition in these residues to produce a rigid and asymmetric complex. Our findings may provide insight toward understanding different association affinities of αβ−spectrin at the tetramerization site for erythroid and non‐erythroid spectrin and a possible mechanism to understand some of the clinical mutations, such as L49F of α‐spectrin, which occur outside the functional partial domain region.</description><subject>Calorimetry - methods</subject><subject>Chromatography - methods</subject><subject>Circular Dichroism</subject><subject>Erythrocytes - metabolism</subject><subject>erythroid spectrin</subject><subject>Humans</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Models, Statistical</subject><subject>Molecular Weight</subject><subject>prolate ellipsoid</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Recombinant Proteins - chemistry</subject><subject>Scattering, Radiation</subject><subject>Spectrin - chemistry</subject><subject>tetramer</subject><subject>αβ‐complex</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFuFDEQRS0EIkNgxxp5xSoTXLbb7t4goREEpEhBCCR2lsddnjHqbje2J2iy4gi5Chwkh-Ak6WRGIWxYVUn1_q8vfUKeAzsGAPZqzMdMC4BKMP2AzECqZl436utDMmONgnktVH1AnuT8jTEmgYvH5AB0w6paVDOyWsTBx9TbEuJgO-rWdlghjZ5i2pZ1iqGlV7_-_LzMI7qSwkBtoWWNtGBJtscULm6lNIeCdDNO2zIMbRhW9Or3PdlT8sjbLuOz_TwkX969_bx4Pz89O_mweHM6d5JPwb2tli0TcoqqJXhZMfCeVzV6tURVi8Zhy7UDhXwCwTEpHeNato2vW4-1OCSvd77jZtlj63CYYnZmTKG3aWuiDebfyxDWZhXPDecAmsnJ4OXeIMXvG8zF9CE77Do7YNxko2opmdY3n452oEsx54T-7gkwc9OMGbO5a2bCX9wP9hfeVzEBYgf8CB1u_2tmPn46A8UraMQ17U2fig</recordid><startdate>200711</startdate><enddate>200711</enddate><creator>Long, Fei</creator><creator>McElheny, Dan</creator><creator>Jiang, Shaokai</creator><creator>Park, Sunghyouk</creator><creator>Caffrey, Michael S.</creator><creator>Fung, Leslie W.‐M.</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200711</creationdate><title>Conformational change of erythroid α‐spectrin at the tetramerization site upon binding β‐spectrin</title><author>Long, Fei ; McElheny, Dan ; Jiang, Shaokai ; Park, Sunghyouk ; Caffrey, Michael S. ; Fung, Leslie W.‐M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4269-fa5bd034000741f4501ff258ef6be6839ced27c16e25bd1c044c0274d9f8dfe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Calorimetry - methods</topic><topic>Chromatography - methods</topic><topic>Circular Dichroism</topic><topic>Erythrocytes - metabolism</topic><topic>erythroid spectrin</topic><topic>Humans</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Models, Statistical</topic><topic>Molecular Weight</topic><topic>prolate ellipsoid</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Recombinant Proteins - chemistry</topic><topic>Scattering, Radiation</topic><topic>Spectrin - chemistry</topic><topic>tetramer</topic><topic>αβ‐complex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Fei</creatorcontrib><creatorcontrib>McElheny, Dan</creatorcontrib><creatorcontrib>Jiang, Shaokai</creatorcontrib><creatorcontrib>Park, Sunghyouk</creatorcontrib><creatorcontrib>Caffrey, Michael S.</creatorcontrib><creatorcontrib>Fung, Leslie W.‐M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Fei</au><au>McElheny, Dan</au><au>Jiang, Shaokai</au><au>Park, Sunghyouk</au><au>Caffrey, Michael S.</au><au>Fung, Leslie W.‐M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformational change of erythroid α‐spectrin at the tetramerization site upon binding β‐spectrin</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2007-11</date><risdate>2007</risdate><volume>16</volume><issue>11</issue><spage>2519</spage><epage>2530</epage><pages>2519-2530</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>We previously determined the solution structures of the first 156 residues of human erythroid α‐spectrin (SpαI‐1–156, or simply Spα). Spα consists of the tetramerization site of α‐spectrin and associates with a model β‐spectrin protein (Spβ) with an affinity similar to that of native α‐ and β‐spectrin. Upon αβ−complex formation, our previous results indicate that there is an increase in helicity in the complex, suggesting conformational change in either Spα or Spβ or in both. We have now used isothermal titration calorimetry, circular dichroism, static and dynamic light scattering, and solution NMR methods to investigate properties of the complex as well as the conformation of Spα in the complex. The results reveal a highly asymmetric complex, with a Perrin shape parameter of 1.23, which could correspond to a prolate ellipsoid with a major axis of about five and a minor axis of about one. We identified 12 residues, five prior to and seven following the partial domain helix in Spα that moved freely relative to the structural domain in the absence of Spβ but when in the complex moved with a mobility similar to that of the structural domain. Thus, it appears that the association with Spβ induced an unstructured‐to‐helical conformational transition in these residues to produce a rigid and asymmetric complex. Our findings may provide insight toward understanding different association affinities of αβ−spectrin at the tetramerization site for erythroid and non‐erythroid spectrin and a possible mechanism to understand some of the clinical mutations, such as L49F of α‐spectrin, which occur outside the functional partial domain region.</abstract><cop>Bristol</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>17905835</pmid><doi>10.1110/ps.073115307</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2007-11, Vol.16 (11), p.2519-2530
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2211704
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Calorimetry - methods
Chromatography - methods
Circular Dichroism
Erythrocytes - metabolism
erythroid spectrin
Humans
Magnetic Resonance Spectroscopy - methods
Models, Statistical
Molecular Weight
prolate ellipsoid
Protein Binding
Protein Conformation
Protein Structure, Secondary
Protein Structure, Tertiary
Recombinant Proteins - chemistry
Scattering, Radiation
Spectrin - chemistry
tetramer
αβ‐complex
title Conformational change of erythroid α‐spectrin at the tetramerization site upon binding β‐spectrin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A57%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformational%20change%20of%20erythroid%20%CE%B1%E2%80%90spectrin%20at%20the%20tetramerization%20site%20upon%20binding%20%CE%B2%E2%80%90spectrin&rft.jtitle=Protein%20science&rft.au=Long,%20Fei&rft.date=2007-11&rft.volume=16&rft.issue=11&rft.spage=2519&rft.epage=2530&rft.pages=2519-2530&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1110/ps.073115307&rft_dat=%3Cproquest_pubme%3E68440778%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68440778&rft_id=info:pmid/17905835&rfr_iscdi=true