How similar are enzyme active site geometries derived from quantum mechanical theozymes to crystal structures of enzyme‐inhibitor complexes? Implications for enzyme design

Quantum mechanical optimizations of theoretical enzymes (theozymes), which are predicted catalytic arrays of biological functionalities stabilizing a transition state, have been carried out for a set of nine diverse enzyme active sites. For each enzyme, the theozyme for the rate‐determining transiti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2007-09, Vol.16 (9), p.1851-1866
Hauptverfasser: DeChancie, Jason, Clemente, Fernando R., Smith, Adam J.T., Gunaydin, Hakan, Zhao, Yi‐Lei, Zhang, Xiyun, Houk, K.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1866
container_issue 9
container_start_page 1851
container_title Protein science
container_volume 16
creator DeChancie, Jason
Clemente, Fernando R.
Smith, Adam J.T.
Gunaydin, Hakan
Zhao, Yi‐Lei
Zhang, Xiyun
Houk, K.N.
description Quantum mechanical optimizations of theoretical enzymes (theozymes), which are predicted catalytic arrays of biological functionalities stabilizing a transition state, have been carried out for a set of nine diverse enzyme active sites. For each enzyme, the theozyme for the rate‐determining transition state plus the catalytic groups modeled by side‐chain mimics was optimized using B3LYP/6–31G(d) or, in one case, HF/3–21G(d) quantum mechanical calculations. To determine if the theozyme can reproduce the natural evolutionary catalytic geometry, the positions of optimized catalytic atoms, i.e., covalent, partial covalent, or stabilizing interactions with transition state atoms, are compared to the positions of the atoms in the X‐ray crystal structure with a bound inhibitor. These structure comparisons are contrasted to computed substrate–active site structures surrounded by the same theozyme residues. The theozyme/transition structure is shown to predict geometries of active sites with an average RMSD of 0.64 Å from the crystal structure, while the RMSD for the bound intermediate complexes are significantly higher at 1.42 Å. The implications for computational enzyme design are discussed.
doi_str_mv 10.1110/ps.072963707
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2206971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68231530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4261-217d805bc4236307eca5308f229da8032a53e01e3da7bf85ce0045026ac0f62a3</originalsourceid><addsrcrecordid>eNp9UctuFDEQtBCIbAI3zsgnTmzwY8f2XEBRREikSEEIJG6W19OzazS2J7YnYTnxCfwIP8WX4GhHAS6c7K4qV3e7EHpGyTGllLwa8zGRrBVcEvkALehKtEvVis8P0YK0gi4VF-oAHeb8hRCyoow_RgdUSiG4Ygv08zze4uy8G0zCJgGG8G3nARtb3A1UpgDeQPRQkoOMO0gV7nCfosfXkwll8tiD3ZrgrBlw2UK8e59xidimXS4VzCVNtkyporGfG_z6_sOFrVu7EhO20Y8DfIX8Bl_UW3UqLoaM-8rN83SQ3SY8QY96M2R4Op9H6NPZ24-n58vLq3cXpyeXS7tidWVGZadIs64VF5xIsKbhRPWMtZ1RhLNaAqHAOyPXvWos1J9pCBPGkl4ww4_Q673vOK09dBZCSWbQY3LepJ2Oxul_meC2ehNvNGNEtJJWgxezQYrXE-SivcsWhsEEiFPWQjFO60xV-HIvtCnmnKC_b0KJvstXj1nf51vlz_8e7I94DrQK-F5w6wbY_ddMv_9wRQVVDeW_AaMwt9E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68231530</pqid></control><display><type>article</type><title>How similar are enzyme active site geometries derived from quantum mechanical theozymes to crystal structures of enzyme‐inhibitor complexes? Implications for enzyme design</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>DeChancie, Jason ; Clemente, Fernando R. ; Smith, Adam J.T. ; Gunaydin, Hakan ; Zhao, Yi‐Lei ; Zhang, Xiyun ; Houk, K.N.</creator><creatorcontrib>DeChancie, Jason ; Clemente, Fernando R. ; Smith, Adam J.T. ; Gunaydin, Hakan ; Zhao, Yi‐Lei ; Zhang, Xiyun ; Houk, K.N.</creatorcontrib><description>Quantum mechanical optimizations of theoretical enzymes (theozymes), which are predicted catalytic arrays of biological functionalities stabilizing a transition state, have been carried out for a set of nine diverse enzyme active sites. For each enzyme, the theozyme for the rate‐determining transition state plus the catalytic groups modeled by side‐chain mimics was optimized using B3LYP/6–31G(d) or, in one case, HF/3–21G(d) quantum mechanical calculations. To determine if the theozyme can reproduce the natural evolutionary catalytic geometry, the positions of optimized catalytic atoms, i.e., covalent, partial covalent, or stabilizing interactions with transition state atoms, are compared to the positions of the atoms in the X‐ray crystal structure with a bound inhibitor. These structure comparisons are contrasted to computed substrate–active site structures surrounded by the same theozyme residues. The theozyme/transition structure is shown to predict geometries of active sites with an average RMSD of 0.64 Å from the crystal structure, while the RMSD for the bound intermediate complexes are significantly higher at 1.42 Å. The implications for computational enzyme design are discussed.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1110/ps.072963707</identifier><identifier>PMID: 17766382</identifier><language>eng</language><publisher>Bristol: Cold Spring Harbor Laboratory Press</publisher><subject>active site structure ; Animals ; Bacillus - enzymology ; Binding Sites ; biological catalysis ; Catalysis ; Cattle ; Crystallography, X-Ray ; density functional theory ; enzyme ; Enzymes - metabolism ; Escherichia coli - enzymology ; Humans ; Hydrogen Bonding ; Models, Chemical ; Models, Theoretical ; Protein Binding ; Protein Structure, Secondary ; Pseudomonas - enzymology ; Quantum Theory ; Substrate Specificity ; theozyme</subject><ispartof>Protein science, 2007-09, Vol.16 (9), p.1851-1866</ispartof><rights>Copyright © 2007 The Protein Society</rights><rights>Copyright © 2007 The Protein Society 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4261-217d805bc4236307eca5308f229da8032a53e01e3da7bf85ce0045026ac0f62a3</citedby><cites>FETCH-LOGICAL-c4261-217d805bc4236307eca5308f229da8032a53e01e3da7bf85ce0045026ac0f62a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2206971/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2206971/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17766382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DeChancie, Jason</creatorcontrib><creatorcontrib>Clemente, Fernando R.</creatorcontrib><creatorcontrib>Smith, Adam J.T.</creatorcontrib><creatorcontrib>Gunaydin, Hakan</creatorcontrib><creatorcontrib>Zhao, Yi‐Lei</creatorcontrib><creatorcontrib>Zhang, Xiyun</creatorcontrib><creatorcontrib>Houk, K.N.</creatorcontrib><title>How similar are enzyme active site geometries derived from quantum mechanical theozymes to crystal structures of enzyme‐inhibitor complexes? Implications for enzyme design</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Quantum mechanical optimizations of theoretical enzymes (theozymes), which are predicted catalytic arrays of biological functionalities stabilizing a transition state, have been carried out for a set of nine diverse enzyme active sites. For each enzyme, the theozyme for the rate‐determining transition state plus the catalytic groups modeled by side‐chain mimics was optimized using B3LYP/6–31G(d) or, in one case, HF/3–21G(d) quantum mechanical calculations. To determine if the theozyme can reproduce the natural evolutionary catalytic geometry, the positions of optimized catalytic atoms, i.e., covalent, partial covalent, or stabilizing interactions with transition state atoms, are compared to the positions of the atoms in the X‐ray crystal structure with a bound inhibitor. These structure comparisons are contrasted to computed substrate–active site structures surrounded by the same theozyme residues. The theozyme/transition structure is shown to predict geometries of active sites with an average RMSD of 0.64 Å from the crystal structure, while the RMSD for the bound intermediate complexes are significantly higher at 1.42 Å. The implications for computational enzyme design are discussed.</description><subject>active site structure</subject><subject>Animals</subject><subject>Bacillus - enzymology</subject><subject>Binding Sites</subject><subject>biological catalysis</subject><subject>Catalysis</subject><subject>Cattle</subject><subject>Crystallography, X-Ray</subject><subject>density functional theory</subject><subject>enzyme</subject><subject>Enzymes - metabolism</subject><subject>Escherichia coli - enzymology</subject><subject>Humans</subject><subject>Hydrogen Bonding</subject><subject>Models, Chemical</subject><subject>Models, Theoretical</subject><subject>Protein Binding</subject><subject>Protein Structure, Secondary</subject><subject>Pseudomonas - enzymology</subject><subject>Quantum Theory</subject><subject>Substrate Specificity</subject><subject>theozyme</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UctuFDEQtBCIbAI3zsgnTmzwY8f2XEBRREikSEEIJG6W19OzazS2J7YnYTnxCfwIP8WX4GhHAS6c7K4qV3e7EHpGyTGllLwa8zGRrBVcEvkALehKtEvVis8P0YK0gi4VF-oAHeb8hRCyoow_RgdUSiG4Ygv08zze4uy8G0zCJgGG8G3nARtb3A1UpgDeQPRQkoOMO0gV7nCfosfXkwll8tiD3ZrgrBlw2UK8e59xidimXS4VzCVNtkyporGfG_z6_sOFrVu7EhO20Y8DfIX8Bl_UW3UqLoaM-8rN83SQ3SY8QY96M2R4Op9H6NPZ24-n58vLq3cXpyeXS7tidWVGZadIs64VF5xIsKbhRPWMtZ1RhLNaAqHAOyPXvWos1J9pCBPGkl4ww4_Q673vOK09dBZCSWbQY3LepJ2Oxul_meC2ehNvNGNEtJJWgxezQYrXE-SivcsWhsEEiFPWQjFO60xV-HIvtCnmnKC_b0KJvstXj1nf51vlz_8e7I94DrQK-F5w6wbY_ddMv_9wRQVVDeW_AaMwt9E</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>DeChancie, Jason</creator><creator>Clemente, Fernando R.</creator><creator>Smith, Adam J.T.</creator><creator>Gunaydin, Hakan</creator><creator>Zhao, Yi‐Lei</creator><creator>Zhang, Xiyun</creator><creator>Houk, K.N.</creator><general>Cold Spring Harbor Laboratory Press</general><general>Wiley-Blackwell</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200709</creationdate><title>How similar are enzyme active site geometries derived from quantum mechanical theozymes to crystal structures of enzyme‐inhibitor complexes? Implications for enzyme design</title><author>DeChancie, Jason ; Clemente, Fernando R. ; Smith, Adam J.T. ; Gunaydin, Hakan ; Zhao, Yi‐Lei ; Zhang, Xiyun ; Houk, K.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4261-217d805bc4236307eca5308f229da8032a53e01e3da7bf85ce0045026ac0f62a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>active site structure</topic><topic>Animals</topic><topic>Bacillus - enzymology</topic><topic>Binding Sites</topic><topic>biological catalysis</topic><topic>Catalysis</topic><topic>Cattle</topic><topic>Crystallography, X-Ray</topic><topic>density functional theory</topic><topic>enzyme</topic><topic>Enzymes - metabolism</topic><topic>Escherichia coli - enzymology</topic><topic>Humans</topic><topic>Hydrogen Bonding</topic><topic>Models, Chemical</topic><topic>Models, Theoretical</topic><topic>Protein Binding</topic><topic>Protein Structure, Secondary</topic><topic>Pseudomonas - enzymology</topic><topic>Quantum Theory</topic><topic>Substrate Specificity</topic><topic>theozyme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeChancie, Jason</creatorcontrib><creatorcontrib>Clemente, Fernando R.</creatorcontrib><creatorcontrib>Smith, Adam J.T.</creatorcontrib><creatorcontrib>Gunaydin, Hakan</creatorcontrib><creatorcontrib>Zhao, Yi‐Lei</creatorcontrib><creatorcontrib>Zhang, Xiyun</creatorcontrib><creatorcontrib>Houk, K.N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeChancie, Jason</au><au>Clemente, Fernando R.</au><au>Smith, Adam J.T.</au><au>Gunaydin, Hakan</au><au>Zhao, Yi‐Lei</au><au>Zhang, Xiyun</au><au>Houk, K.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How similar are enzyme active site geometries derived from quantum mechanical theozymes to crystal structures of enzyme‐inhibitor complexes? Implications for enzyme design</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2007-09</date><risdate>2007</risdate><volume>16</volume><issue>9</issue><spage>1851</spage><epage>1866</epage><pages>1851-1866</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>Quantum mechanical optimizations of theoretical enzymes (theozymes), which are predicted catalytic arrays of biological functionalities stabilizing a transition state, have been carried out for a set of nine diverse enzyme active sites. For each enzyme, the theozyme for the rate‐determining transition state plus the catalytic groups modeled by side‐chain mimics was optimized using B3LYP/6–31G(d) or, in one case, HF/3–21G(d) quantum mechanical calculations. To determine if the theozyme can reproduce the natural evolutionary catalytic geometry, the positions of optimized catalytic atoms, i.e., covalent, partial covalent, or stabilizing interactions with transition state atoms, are compared to the positions of the atoms in the X‐ray crystal structure with a bound inhibitor. These structure comparisons are contrasted to computed substrate–active site structures surrounded by the same theozyme residues. The theozyme/transition structure is shown to predict geometries of active sites with an average RMSD of 0.64 Å from the crystal structure, while the RMSD for the bound intermediate complexes are significantly higher at 1.42 Å. The implications for computational enzyme design are discussed.</abstract><cop>Bristol</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>17766382</pmid><doi>10.1110/ps.072963707</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2007-09, Vol.16 (9), p.1851-1866
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2206971
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects active site structure
Animals
Bacillus - enzymology
Binding Sites
biological catalysis
Catalysis
Cattle
Crystallography, X-Ray
density functional theory
enzyme
Enzymes - metabolism
Escherichia coli - enzymology
Humans
Hydrogen Bonding
Models, Chemical
Models, Theoretical
Protein Binding
Protein Structure, Secondary
Pseudomonas - enzymology
Quantum Theory
Substrate Specificity
theozyme
title How similar are enzyme active site geometries derived from quantum mechanical theozymes to crystal structures of enzyme‐inhibitor complexes? Implications for enzyme design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20similar%20are%20enzyme%20active%20site%20geometries%20derived%20from%20quantum%20mechanical%20theozymes%20to%20crystal%20structures%20of%20enzyme%E2%80%90inhibitor%20complexes?%20Implications%20for%20enzyme%20design&rft.jtitle=Protein%20science&rft.au=DeChancie,%20Jason&rft.date=2007-09&rft.volume=16&rft.issue=9&rft.spage=1851&rft.epage=1866&rft.pages=1851-1866&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1110/ps.072963707&rft_dat=%3Cproquest_pubme%3E68231530%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68231530&rft_id=info:pmid/17766382&rfr_iscdi=true