How similar are enzyme active site geometries derived from quantum mechanical theozymes to crystal structures of enzyme‐inhibitor complexes? Implications for enzyme design
Quantum mechanical optimizations of theoretical enzymes (theozymes), which are predicted catalytic arrays of biological functionalities stabilizing a transition state, have been carried out for a set of nine diverse enzyme active sites. For each enzyme, the theozyme for the rate‐determining transiti...
Gespeichert in:
Veröffentlicht in: | Protein science 2007-09, Vol.16 (9), p.1851-1866 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1866 |
---|---|
container_issue | 9 |
container_start_page | 1851 |
container_title | Protein science |
container_volume | 16 |
creator | DeChancie, Jason Clemente, Fernando R. Smith, Adam J.T. Gunaydin, Hakan Zhao, Yi‐Lei Zhang, Xiyun Houk, K.N. |
description | Quantum mechanical optimizations of theoretical enzymes (theozymes), which are predicted catalytic arrays of biological functionalities stabilizing a transition state, have been carried out for a set of nine diverse enzyme active sites. For each enzyme, the theozyme for the rate‐determining transition state plus the catalytic groups modeled by side‐chain mimics was optimized using B3LYP/6–31G(d) or, in one case, HF/3–21G(d) quantum mechanical calculations. To determine if the theozyme can reproduce the natural evolutionary catalytic geometry, the positions of optimized catalytic atoms, i.e., covalent, partial covalent, or stabilizing interactions with transition state atoms, are compared to the positions of the atoms in the X‐ray crystal structure with a bound inhibitor. These structure comparisons are contrasted to computed substrate–active site structures surrounded by the same theozyme residues. The theozyme/transition structure is shown to predict geometries of active sites with an average RMSD of 0.64 Å from the crystal structure, while the RMSD for the bound intermediate complexes are significantly higher at 1.42 Å. The implications for computational enzyme design are discussed. |
doi_str_mv | 10.1110/ps.072963707 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2206971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68231530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4261-217d805bc4236307eca5308f229da8032a53e01e3da7bf85ce0045026ac0f62a3</originalsourceid><addsrcrecordid>eNp9UctuFDEQtBCIbAI3zsgnTmzwY8f2XEBRREikSEEIJG6W19OzazS2J7YnYTnxCfwIP8WX4GhHAS6c7K4qV3e7EHpGyTGllLwa8zGRrBVcEvkALehKtEvVis8P0YK0gi4VF-oAHeb8hRCyoow_RgdUSiG4Ygv08zze4uy8G0zCJgGG8G3nARtb3A1UpgDeQPRQkoOMO0gV7nCfosfXkwll8tiD3ZrgrBlw2UK8e59xidimXS4VzCVNtkyporGfG_z6_sOFrVu7EhO20Y8DfIX8Bl_UW3UqLoaM-8rN83SQ3SY8QY96M2R4Op9H6NPZ24-n58vLq3cXpyeXS7tidWVGZadIs64VF5xIsKbhRPWMtZ1RhLNaAqHAOyPXvWos1J9pCBPGkl4ww4_Q673vOK09dBZCSWbQY3LepJ2Oxul_meC2ehNvNGNEtJJWgxezQYrXE-SivcsWhsEEiFPWQjFO60xV-HIvtCnmnKC_b0KJvstXj1nf51vlz_8e7I94DrQK-F5w6wbY_ddMv_9wRQVVDeW_AaMwt9E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68231530</pqid></control><display><type>article</type><title>How similar are enzyme active site geometries derived from quantum mechanical theozymes to crystal structures of enzyme‐inhibitor complexes? Implications for enzyme design</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>DeChancie, Jason ; Clemente, Fernando R. ; Smith, Adam J.T. ; Gunaydin, Hakan ; Zhao, Yi‐Lei ; Zhang, Xiyun ; Houk, K.N.</creator><creatorcontrib>DeChancie, Jason ; Clemente, Fernando R. ; Smith, Adam J.T. ; Gunaydin, Hakan ; Zhao, Yi‐Lei ; Zhang, Xiyun ; Houk, K.N.</creatorcontrib><description>Quantum mechanical optimizations of theoretical enzymes (theozymes), which are predicted catalytic arrays of biological functionalities stabilizing a transition state, have been carried out for a set of nine diverse enzyme active sites. For each enzyme, the theozyme for the rate‐determining transition state plus the catalytic groups modeled by side‐chain mimics was optimized using B3LYP/6–31G(d) or, in one case, HF/3–21G(d) quantum mechanical calculations. To determine if the theozyme can reproduce the natural evolutionary catalytic geometry, the positions of optimized catalytic atoms, i.e., covalent, partial covalent, or stabilizing interactions with transition state atoms, are compared to the positions of the atoms in the X‐ray crystal structure with a bound inhibitor. These structure comparisons are contrasted to computed substrate–active site structures surrounded by the same theozyme residues. The theozyme/transition structure is shown to predict geometries of active sites with an average RMSD of 0.64 Å from the crystal structure, while the RMSD for the bound intermediate complexes are significantly higher at 1.42 Å. The implications for computational enzyme design are discussed.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1110/ps.072963707</identifier><identifier>PMID: 17766382</identifier><language>eng</language><publisher>Bristol: Cold Spring Harbor Laboratory Press</publisher><subject>active site structure ; Animals ; Bacillus - enzymology ; Binding Sites ; biological catalysis ; Catalysis ; Cattle ; Crystallography, X-Ray ; density functional theory ; enzyme ; Enzymes - metabolism ; Escherichia coli - enzymology ; Humans ; Hydrogen Bonding ; Models, Chemical ; Models, Theoretical ; Protein Binding ; Protein Structure, Secondary ; Pseudomonas - enzymology ; Quantum Theory ; Substrate Specificity ; theozyme</subject><ispartof>Protein science, 2007-09, Vol.16 (9), p.1851-1866</ispartof><rights>Copyright © 2007 The Protein Society</rights><rights>Copyright © 2007 The Protein Society 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4261-217d805bc4236307eca5308f229da8032a53e01e3da7bf85ce0045026ac0f62a3</citedby><cites>FETCH-LOGICAL-c4261-217d805bc4236307eca5308f229da8032a53e01e3da7bf85ce0045026ac0f62a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2206971/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2206971/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17766382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DeChancie, Jason</creatorcontrib><creatorcontrib>Clemente, Fernando R.</creatorcontrib><creatorcontrib>Smith, Adam J.T.</creatorcontrib><creatorcontrib>Gunaydin, Hakan</creatorcontrib><creatorcontrib>Zhao, Yi‐Lei</creatorcontrib><creatorcontrib>Zhang, Xiyun</creatorcontrib><creatorcontrib>Houk, K.N.</creatorcontrib><title>How similar are enzyme active site geometries derived from quantum mechanical theozymes to crystal structures of enzyme‐inhibitor complexes? Implications for enzyme design</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Quantum mechanical optimizations of theoretical enzymes (theozymes), which are predicted catalytic arrays of biological functionalities stabilizing a transition state, have been carried out for a set of nine diverse enzyme active sites. For each enzyme, the theozyme for the rate‐determining transition state plus the catalytic groups modeled by side‐chain mimics was optimized using B3LYP/6–31G(d) or, in one case, HF/3–21G(d) quantum mechanical calculations. To determine if the theozyme can reproduce the natural evolutionary catalytic geometry, the positions of optimized catalytic atoms, i.e., covalent, partial covalent, or stabilizing interactions with transition state atoms, are compared to the positions of the atoms in the X‐ray crystal structure with a bound inhibitor. These structure comparisons are contrasted to computed substrate–active site structures surrounded by the same theozyme residues. The theozyme/transition structure is shown to predict geometries of active sites with an average RMSD of 0.64 Å from the crystal structure, while the RMSD for the bound intermediate complexes are significantly higher at 1.42 Å. The implications for computational enzyme design are discussed.</description><subject>active site structure</subject><subject>Animals</subject><subject>Bacillus - enzymology</subject><subject>Binding Sites</subject><subject>biological catalysis</subject><subject>Catalysis</subject><subject>Cattle</subject><subject>Crystallography, X-Ray</subject><subject>density functional theory</subject><subject>enzyme</subject><subject>Enzymes - metabolism</subject><subject>Escherichia coli - enzymology</subject><subject>Humans</subject><subject>Hydrogen Bonding</subject><subject>Models, Chemical</subject><subject>Models, Theoretical</subject><subject>Protein Binding</subject><subject>Protein Structure, Secondary</subject><subject>Pseudomonas - enzymology</subject><subject>Quantum Theory</subject><subject>Substrate Specificity</subject><subject>theozyme</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UctuFDEQtBCIbAI3zsgnTmzwY8f2XEBRREikSEEIJG6W19OzazS2J7YnYTnxCfwIP8WX4GhHAS6c7K4qV3e7EHpGyTGllLwa8zGRrBVcEvkALehKtEvVis8P0YK0gi4VF-oAHeb8hRCyoow_RgdUSiG4Ygv08zze4uy8G0zCJgGG8G3nARtb3A1UpgDeQPRQkoOMO0gV7nCfosfXkwll8tiD3ZrgrBlw2UK8e59xidimXS4VzCVNtkyporGfG_z6_sOFrVu7EhO20Y8DfIX8Bl_UW3UqLoaM-8rN83SQ3SY8QY96M2R4Op9H6NPZ24-n58vLq3cXpyeXS7tidWVGZadIs64VF5xIsKbhRPWMtZ1RhLNaAqHAOyPXvWos1J9pCBPGkl4ww4_Q673vOK09dBZCSWbQY3LepJ2Oxul_meC2ehNvNGNEtJJWgxezQYrXE-SivcsWhsEEiFPWQjFO60xV-HIvtCnmnKC_b0KJvstXj1nf51vlz_8e7I94DrQK-F5w6wbY_ddMv_9wRQVVDeW_AaMwt9E</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>DeChancie, Jason</creator><creator>Clemente, Fernando R.</creator><creator>Smith, Adam J.T.</creator><creator>Gunaydin, Hakan</creator><creator>Zhao, Yi‐Lei</creator><creator>Zhang, Xiyun</creator><creator>Houk, K.N.</creator><general>Cold Spring Harbor Laboratory Press</general><general>Wiley-Blackwell</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200709</creationdate><title>How similar are enzyme active site geometries derived from quantum mechanical theozymes to crystal structures of enzyme‐inhibitor complexes? Implications for enzyme design</title><author>DeChancie, Jason ; Clemente, Fernando R. ; Smith, Adam J.T. ; Gunaydin, Hakan ; Zhao, Yi‐Lei ; Zhang, Xiyun ; Houk, K.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4261-217d805bc4236307eca5308f229da8032a53e01e3da7bf85ce0045026ac0f62a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>active site structure</topic><topic>Animals</topic><topic>Bacillus - enzymology</topic><topic>Binding Sites</topic><topic>biological catalysis</topic><topic>Catalysis</topic><topic>Cattle</topic><topic>Crystallography, X-Ray</topic><topic>density functional theory</topic><topic>enzyme</topic><topic>Enzymes - metabolism</topic><topic>Escherichia coli - enzymology</topic><topic>Humans</topic><topic>Hydrogen Bonding</topic><topic>Models, Chemical</topic><topic>Models, Theoretical</topic><topic>Protein Binding</topic><topic>Protein Structure, Secondary</topic><topic>Pseudomonas - enzymology</topic><topic>Quantum Theory</topic><topic>Substrate Specificity</topic><topic>theozyme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeChancie, Jason</creatorcontrib><creatorcontrib>Clemente, Fernando R.</creatorcontrib><creatorcontrib>Smith, Adam J.T.</creatorcontrib><creatorcontrib>Gunaydin, Hakan</creatorcontrib><creatorcontrib>Zhao, Yi‐Lei</creatorcontrib><creatorcontrib>Zhang, Xiyun</creatorcontrib><creatorcontrib>Houk, K.N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeChancie, Jason</au><au>Clemente, Fernando R.</au><au>Smith, Adam J.T.</au><au>Gunaydin, Hakan</au><au>Zhao, Yi‐Lei</au><au>Zhang, Xiyun</au><au>Houk, K.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How similar are enzyme active site geometries derived from quantum mechanical theozymes to crystal structures of enzyme‐inhibitor complexes? Implications for enzyme design</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2007-09</date><risdate>2007</risdate><volume>16</volume><issue>9</issue><spage>1851</spage><epage>1866</epage><pages>1851-1866</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>Quantum mechanical optimizations of theoretical enzymes (theozymes), which are predicted catalytic arrays of biological functionalities stabilizing a transition state, have been carried out for a set of nine diverse enzyme active sites. For each enzyme, the theozyme for the rate‐determining transition state plus the catalytic groups modeled by side‐chain mimics was optimized using B3LYP/6–31G(d) or, in one case, HF/3–21G(d) quantum mechanical calculations. To determine if the theozyme can reproduce the natural evolutionary catalytic geometry, the positions of optimized catalytic atoms, i.e., covalent, partial covalent, or stabilizing interactions with transition state atoms, are compared to the positions of the atoms in the X‐ray crystal structure with a bound inhibitor. These structure comparisons are contrasted to computed substrate–active site structures surrounded by the same theozyme residues. The theozyme/transition structure is shown to predict geometries of active sites with an average RMSD of 0.64 Å from the crystal structure, while the RMSD for the bound intermediate complexes are significantly higher at 1.42 Å. The implications for computational enzyme design are discussed.</abstract><cop>Bristol</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>17766382</pmid><doi>10.1110/ps.072963707</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-8368 |
ispartof | Protein science, 2007-09, Vol.16 (9), p.1851-1866 |
issn | 0961-8368 1469-896X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2206971 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | active site structure Animals Bacillus - enzymology Binding Sites biological catalysis Catalysis Cattle Crystallography, X-Ray density functional theory enzyme Enzymes - metabolism Escherichia coli - enzymology Humans Hydrogen Bonding Models, Chemical Models, Theoretical Protein Binding Protein Structure, Secondary Pseudomonas - enzymology Quantum Theory Substrate Specificity theozyme |
title | How similar are enzyme active site geometries derived from quantum mechanical theozymes to crystal structures of enzyme‐inhibitor complexes? Implications for enzyme design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20similar%20are%20enzyme%20active%20site%20geometries%20derived%20from%20quantum%20mechanical%20theozymes%20to%20crystal%20structures%20of%20enzyme%E2%80%90inhibitor%20complexes?%20Implications%20for%20enzyme%20design&rft.jtitle=Protein%20science&rft.au=DeChancie,%20Jason&rft.date=2007-09&rft.volume=16&rft.issue=9&rft.spage=1851&rft.epage=1866&rft.pages=1851-1866&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1110/ps.072963707&rft_dat=%3Cproquest_pubme%3E68231530%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68231530&rft_id=info:pmid/17766382&rfr_iscdi=true |