Intracrine cysteinyl leukotriene receptor-mediated signaling of eosinophil vesicular transport-mediated interleukin-4 secretion
We investigated whether cysteinyl leukotrienes (cysLT) are intracrine signal transducers that regulate human eosinophil degranulation mechanisms. Interleukin (IL)-16, eotaxin, and RANTES stimulate vesicular transport-mediated release of preformed, granule-derived IL-4 and RANTES from eosinophils and...
Gespeichert in:
Veröffentlicht in: | The Journal of experimental medicine 2002-09, Vol.196 (6), p.841-850 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigated whether cysteinyl leukotrienes (cysLT) are intracrine signal transducers that regulate human eosinophil degranulation mechanisms. Interleukin (IL)-16, eotaxin, and RANTES stimulate vesicular transport-mediated release of preformed, granule-derived IL-4 and RANTES from eosinophils and the synthesis at intracellular lipid bodies of LTC(4), the dominant 5-lipoxygenase-derived eicosanoid in eosinophils. 5-Lipoxygenase inhibitors blocked IL-16-, eotaxin-, and RANTES-induced IL-4 release; but neither exogenous LTC(4), LTD(4), nor LTE(4) elicited IL-4 release. Only after membrane permeabilization enabled cysLTs to enter eosinophils did LTC(4) and LTD(4) stimulate IL-4, but not RANTES, release. LTC(4)-elicited IL-4 release was pertussis toxin inhibitable, but inhibitors of the two known G protein-coupled cysLT receptors (cysLTRs) (CysLT1 and CysLT2) did not block LTC(4)-elicited IL-4 release. LTC(4) was 10-fold more potent than LTD(4) and at low concentrations (0.3-3 nM) elicited, and at higher concentrations (>3 nM) inhibited, IL-4 release from permeabilized eosinophils. Likewise with intact eosinophils, LTC(4) export inhibitors, which increased intracellular LTC(4), inhibited eotaxin-elicited IL-4 release. Thus, LTC(4) acts, via an intracellular cysLTR distinct from CysLT1 or CysLT2, as a signal transducer to selectively regulate IL-4 release. These results demonstrate that LTC(4), well recognized as a paracrine mediator, may also dynamically govern inflammatory and immune responses as an intracrine mediator of eosinophil cytokine secretion. |
---|---|
ISSN: | 0022-1007 1540-9538 |
DOI: | 10.1084/jem.20020516 |