Microtubule-Associated Protein 1B: A Neuronal Binding Partner for Gigaxonin
Giant axonal neuropathy (GAN), an autosomal recessive disorder caused by mutations in GAN, is characterized cytopathologically by cytoskeletal abnormality. Based on its sequence, gigaxonin contains an NH2-terminal BTB domain followed by six kelch repeats, which are believed to be important for prote...
Gespeichert in:
Veröffentlicht in: | The Journal of cell biology 2002-08, Vol.158 (3), p.427-433 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 433 |
---|---|
container_issue | 3 |
container_start_page | 427 |
container_title | The Journal of cell biology |
container_volume | 158 |
creator | Ding, Jianqing Liu, Jia-Jia Kowal, Anthony S. Nardine, Timothy Bhattacharya, Priyanka Lee, Arthur Yang, Yanmin |
description | Giant axonal neuropathy (GAN), an autosomal recessive disorder caused by mutations in GAN, is characterized cytopathologically by cytoskeletal abnormality. Based on its sequence, gigaxonin contains an NH2-terminal BTB domain followed by six kelch repeats, which are believed to be important for protein-protein interactions (Adams, J., R. Kelso, and L. Cooley. 2000. Trends Cell Biol. 10:17-24.). Here, we report the identification of a neuronal binding partner of gigaxonin. Results obtained from yeast two-hybrid screening, cotransfections, and coimmunoprecipitations demonstrate that gigaxonin binds directly to microtubule-associated protein (MAP)1B light chain (LC; MAP1B-LC), a protein involved in maintaining the integrity of cytoskeletal structures and promoting neuronal stability. Studies using double immunofluorescent microscopy and ultrastructural analysis revealed physiological colocalization of gigaxonin with MAP1B in neurons. Furthermore, in transfected cells the specific interaction of gigaxonin with MAP1B is shown to enhance the microtubule stability required for axonal transport over long distance. At least two different mutations identified in GAN patients (Bomont, P., L. Cavalier, F. Blondeau, C. Ben Hamida, S. Belal, M. Tazir, E. Demir, H. Topaloglu, R. Korinthenberg, B. Tuysuz, et al. 2000. Nat. Genet. 26:370-374.) lead to loss of gigaxonin-MAP1B-LC interaction. The devastating axonal degeneration and neuronal death found in GAN patients point to the importance of gigaxonin for neuronal survival. Our findings may provide important insights into the pathogenesis of neurodegenerative disorders related to cytoskeletal abnormalities. |
doi_str_mv | 10.1083/jcb.200202055 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2173828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1621265</jstor_id><sourcerecordid>1621265</sourcerecordid><originalsourceid>FETCH-LOGICAL-j341t-1a17702edd7921e86b1ec69c44847fd14fdc85177174a615b6a4ff4e33c6e1e83</originalsourceid><addsrcrecordid>eNqFkc1P3DAQxa2qqCzQY2-oijhwC3j8nR4qLahdEBQ40HPkOM7iKGtTO0Hw32O0QKGXag4jzfvpzdMMQl8AHwBW9LA3zQHBmOTi_AOaAWe4VMDwRzTLYygrTvgm2kqpxxgzyegntAkEmBSSzdDZL2diGKdmGmw5TykYp0fbFld5aJ0v4OhbMS8u7BSD10Nx5Hzr_LK40nH0NhZdiMXCLfV98M7voI1OD8l-fu7b6PfPH9fHJ-X55eL0eH5e9pTBWIIGKTGxbSsrAlaJBqwRlWFMMdm1wLrWKJ4ZkEwL4I3QrOuYpdQIm3m6jb6vfW-nZmVbY_0Y9VDfRrfS8aEO2tXvFe9u6mW4qwlIqsiTwf6zQQx_JpvGeuWSscOgvQ1TqiVUQikJ_wVBcSVVJTO49w_Yhynmi6WnpVgpikWGvr7N_Rr45RsZ2F0DfRpD_KsLAkRw-ghqqpSu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217088306</pqid></control><display><type>article</type><title>Microtubule-Associated Protein 1B: A Neuronal Binding Partner for Gigaxonin</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Ding, Jianqing ; Liu, Jia-Jia ; Kowal, Anthony S. ; Nardine, Timothy ; Bhattacharya, Priyanka ; Lee, Arthur ; Yang, Yanmin</creator><creatorcontrib>Ding, Jianqing ; Liu, Jia-Jia ; Kowal, Anthony S. ; Nardine, Timothy ; Bhattacharya, Priyanka ; Lee, Arthur ; Yang, Yanmin</creatorcontrib><description>Giant axonal neuropathy (GAN), an autosomal recessive disorder caused by mutations in GAN, is characterized cytopathologically by cytoskeletal abnormality. Based on its sequence, gigaxonin contains an NH2-terminal BTB domain followed by six kelch repeats, which are believed to be important for protein-protein interactions (Adams, J., R. Kelso, and L. Cooley. 2000. Trends Cell Biol. 10:17-24.). Here, we report the identification of a neuronal binding partner of gigaxonin. Results obtained from yeast two-hybrid screening, cotransfections, and coimmunoprecipitations demonstrate that gigaxonin binds directly to microtubule-associated protein (MAP)1B light chain (LC; MAP1B-LC), a protein involved in maintaining the integrity of cytoskeletal structures and promoting neuronal stability. Studies using double immunofluorescent microscopy and ultrastructural analysis revealed physiological colocalization of gigaxonin with MAP1B in neurons. Furthermore, in transfected cells the specific interaction of gigaxonin with MAP1B is shown to enhance the microtubule stability required for axonal transport over long distance. At least two different mutations identified in GAN patients (Bomont, P., L. Cavalier, F. Blondeau, C. Ben Hamida, S. Belal, M. Tazir, E. Demir, H. Topaloglu, R. Korinthenberg, B. Tuysuz, et al. 2000. Nat. Genet. 26:370-374.) lead to loss of gigaxonin-MAP1B-LC interaction. The devastating axonal degeneration and neuronal death found in GAN patients point to the importance of gigaxonin for neuronal survival. Our findings may provide important insights into the pathogenesis of neurodegenerative disorders related to cytoskeletal abnormalities.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.200202055</identifier><identifier>PMID: 12147674</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Animals ; Antibodies ; Binding, Competitive - physiology ; Brain ; Brain - metabolism ; Brain - ultrastructure ; Cells, Cultured ; Cellular biology ; Colchicine - pharmacology ; COS cells ; Cytoskeletal Proteins - genetics ; Cytoskeletal Proteins - metabolism ; Cytoskeletal Proteins - ultrastructure ; Cytoskeleton ; Fluorescent Antibody Technique ; Giant axonal neuropathy ; Heredodegenerative Disorders, Nervous System - genetics ; Heredodegenerative Disorders, Nervous System - metabolism ; Heredodegenerative Disorders, Nervous System - physiopathology ; Mice ; Microscopy, Electron ; Microtubule associated proteins ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - metabolism ; Microtubule-Associated Proteins - ultrastructure ; Microtubules ; Microtubules - genetics ; Microtubules - metabolism ; Microtubules - ultrastructure ; Mutation - physiology ; Nervous System - metabolism ; Nervous System - physiopathology ; Nervous System - ultrastructure ; Neurodegenerative diseases ; Neurological disorders ; Neurons ; Neurons - metabolism ; Neurons - ultrastructure ; Protein Binding - physiology ; Protein Structure, Tertiary - physiology ; Proteins ; Transfection ; Yeasts</subject><ispartof>The Journal of cell biology, 2002-08, Vol.158 (3), p.427-433</ispartof><rights>Copyright 2002 The Rockefeller University Press</rights><rights>Copyright Rockefeller University Press Aug 5, 2002</rights><rights>Copyright © 2002, The Rockefeller University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12147674$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Jianqing</creatorcontrib><creatorcontrib>Liu, Jia-Jia</creatorcontrib><creatorcontrib>Kowal, Anthony S.</creatorcontrib><creatorcontrib>Nardine, Timothy</creatorcontrib><creatorcontrib>Bhattacharya, Priyanka</creatorcontrib><creatorcontrib>Lee, Arthur</creatorcontrib><creatorcontrib>Yang, Yanmin</creatorcontrib><title>Microtubule-Associated Protein 1B: A Neuronal Binding Partner for Gigaxonin</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Giant axonal neuropathy (GAN), an autosomal recessive disorder caused by mutations in GAN, is characterized cytopathologically by cytoskeletal abnormality. Based on its sequence, gigaxonin contains an NH2-terminal BTB domain followed by six kelch repeats, which are believed to be important for protein-protein interactions (Adams, J., R. Kelso, and L. Cooley. 2000. Trends Cell Biol. 10:17-24.). Here, we report the identification of a neuronal binding partner of gigaxonin. Results obtained from yeast two-hybrid screening, cotransfections, and coimmunoprecipitations demonstrate that gigaxonin binds directly to microtubule-associated protein (MAP)1B light chain (LC; MAP1B-LC), a protein involved in maintaining the integrity of cytoskeletal structures and promoting neuronal stability. Studies using double immunofluorescent microscopy and ultrastructural analysis revealed physiological colocalization of gigaxonin with MAP1B in neurons. Furthermore, in transfected cells the specific interaction of gigaxonin with MAP1B is shown to enhance the microtubule stability required for axonal transport over long distance. At least two different mutations identified in GAN patients (Bomont, P., L. Cavalier, F. Blondeau, C. Ben Hamida, S. Belal, M. Tazir, E. Demir, H. Topaloglu, R. Korinthenberg, B. Tuysuz, et al. 2000. Nat. Genet. 26:370-374.) lead to loss of gigaxonin-MAP1B-LC interaction. The devastating axonal degeneration and neuronal death found in GAN patients point to the importance of gigaxonin for neuronal survival. Our findings may provide important insights into the pathogenesis of neurodegenerative disorders related to cytoskeletal abnormalities.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Binding, Competitive - physiology</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Brain - ultrastructure</subject><subject>Cells, Cultured</subject><subject>Cellular biology</subject><subject>Colchicine - pharmacology</subject><subject>COS cells</subject><subject>Cytoskeletal Proteins - genetics</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Cytoskeletal Proteins - ultrastructure</subject><subject>Cytoskeleton</subject><subject>Fluorescent Antibody Technique</subject><subject>Giant axonal neuropathy</subject><subject>Heredodegenerative Disorders, Nervous System - genetics</subject><subject>Heredodegenerative Disorders, Nervous System - metabolism</subject><subject>Heredodegenerative Disorders, Nervous System - physiopathology</subject><subject>Mice</subject><subject>Microscopy, Electron</subject><subject>Microtubule associated proteins</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Microtubule-Associated Proteins - ultrastructure</subject><subject>Microtubules</subject><subject>Microtubules - genetics</subject><subject>Microtubules - metabolism</subject><subject>Microtubules - ultrastructure</subject><subject>Mutation - physiology</subject><subject>Nervous System - metabolism</subject><subject>Nervous System - physiopathology</subject><subject>Nervous System - ultrastructure</subject><subject>Neurodegenerative diseases</subject><subject>Neurological disorders</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurons - ultrastructure</subject><subject>Protein Binding - physiology</subject><subject>Protein Structure, Tertiary - physiology</subject><subject>Proteins</subject><subject>Transfection</subject><subject>Yeasts</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1P3DAQxa2qqCzQY2-oijhwC3j8nR4qLahdEBQ40HPkOM7iKGtTO0Hw32O0QKGXag4jzfvpzdMMQl8AHwBW9LA3zQHBmOTi_AOaAWe4VMDwRzTLYygrTvgm2kqpxxgzyegntAkEmBSSzdDZL2diGKdmGmw5TykYp0fbFld5aJ0v4OhbMS8u7BSD10Nx5Hzr_LK40nH0NhZdiMXCLfV98M7voI1OD8l-fu7b6PfPH9fHJ-X55eL0eH5e9pTBWIIGKTGxbSsrAlaJBqwRlWFMMdm1wLrWKJ4ZkEwL4I3QrOuYpdQIm3m6jb6vfW-nZmVbY_0Y9VDfRrfS8aEO2tXvFe9u6mW4qwlIqsiTwf6zQQx_JpvGeuWSscOgvQ1TqiVUQikJ_wVBcSVVJTO49w_Yhynmi6WnpVgpikWGvr7N_Rr45RsZ2F0DfRpD_KsLAkRw-ghqqpSu</recordid><startdate>20020805</startdate><enddate>20020805</enddate><creator>Ding, Jianqing</creator><creator>Liu, Jia-Jia</creator><creator>Kowal, Anthony S.</creator><creator>Nardine, Timothy</creator><creator>Bhattacharya, Priyanka</creator><creator>Lee, Arthur</creator><creator>Yang, Yanmin</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020805</creationdate><title>Microtubule-Associated Protein 1B: A Neuronal Binding Partner for Gigaxonin</title><author>Ding, Jianqing ; Liu, Jia-Jia ; Kowal, Anthony S. ; Nardine, Timothy ; Bhattacharya, Priyanka ; Lee, Arthur ; Yang, Yanmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j341t-1a17702edd7921e86b1ec69c44847fd14fdc85177174a615b6a4ff4e33c6e1e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Binding, Competitive - physiology</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Brain - ultrastructure</topic><topic>Cells, Cultured</topic><topic>Cellular biology</topic><topic>Colchicine - pharmacology</topic><topic>COS cells</topic><topic>Cytoskeletal Proteins - genetics</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Cytoskeletal Proteins - ultrastructure</topic><topic>Cytoskeleton</topic><topic>Fluorescent Antibody Technique</topic><topic>Giant axonal neuropathy</topic><topic>Heredodegenerative Disorders, Nervous System - genetics</topic><topic>Heredodegenerative Disorders, Nervous System - metabolism</topic><topic>Heredodegenerative Disorders, Nervous System - physiopathology</topic><topic>Mice</topic><topic>Microscopy, Electron</topic><topic>Microtubule associated proteins</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Microtubule-Associated Proteins - ultrastructure</topic><topic>Microtubules</topic><topic>Microtubules - genetics</topic><topic>Microtubules - metabolism</topic><topic>Microtubules - ultrastructure</topic><topic>Mutation - physiology</topic><topic>Nervous System - metabolism</topic><topic>Nervous System - physiopathology</topic><topic>Nervous System - ultrastructure</topic><topic>Neurodegenerative diseases</topic><topic>Neurological disorders</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurons - ultrastructure</topic><topic>Protein Binding - physiology</topic><topic>Protein Structure, Tertiary - physiology</topic><topic>Proteins</topic><topic>Transfection</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Jianqing</creatorcontrib><creatorcontrib>Liu, Jia-Jia</creatorcontrib><creatorcontrib>Kowal, Anthony S.</creatorcontrib><creatorcontrib>Nardine, Timothy</creatorcontrib><creatorcontrib>Bhattacharya, Priyanka</creatorcontrib><creatorcontrib>Lee, Arthur</creatorcontrib><creatorcontrib>Yang, Yanmin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Jianqing</au><au>Liu, Jia-Jia</au><au>Kowal, Anthony S.</au><au>Nardine, Timothy</au><au>Bhattacharya, Priyanka</au><au>Lee, Arthur</au><au>Yang, Yanmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microtubule-Associated Protein 1B: A Neuronal Binding Partner for Gigaxonin</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2002-08-05</date><risdate>2002</risdate><volume>158</volume><issue>3</issue><spage>427</spage><epage>433</epage><pages>427-433</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>Giant axonal neuropathy (GAN), an autosomal recessive disorder caused by mutations in GAN, is characterized cytopathologically by cytoskeletal abnormality. Based on its sequence, gigaxonin contains an NH2-terminal BTB domain followed by six kelch repeats, which are believed to be important for protein-protein interactions (Adams, J., R. Kelso, and L. Cooley. 2000. Trends Cell Biol. 10:17-24.). Here, we report the identification of a neuronal binding partner of gigaxonin. Results obtained from yeast two-hybrid screening, cotransfections, and coimmunoprecipitations demonstrate that gigaxonin binds directly to microtubule-associated protein (MAP)1B light chain (LC; MAP1B-LC), a protein involved in maintaining the integrity of cytoskeletal structures and promoting neuronal stability. Studies using double immunofluorescent microscopy and ultrastructural analysis revealed physiological colocalization of gigaxonin with MAP1B in neurons. Furthermore, in transfected cells the specific interaction of gigaxonin with MAP1B is shown to enhance the microtubule stability required for axonal transport over long distance. At least two different mutations identified in GAN patients (Bomont, P., L. Cavalier, F. Blondeau, C. Ben Hamida, S. Belal, M. Tazir, E. Demir, H. Topaloglu, R. Korinthenberg, B. Tuysuz, et al. 2000. Nat. Genet. 26:370-374.) lead to loss of gigaxonin-MAP1B-LC interaction. The devastating axonal degeneration and neuronal death found in GAN patients point to the importance of gigaxonin for neuronal survival. Our findings may provide important insights into the pathogenesis of neurodegenerative disorders related to cytoskeletal abnormalities.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>12147674</pmid><doi>10.1083/jcb.200202055</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9525 |
ispartof | The Journal of cell biology, 2002-08, Vol.158 (3), p.427-433 |
issn | 0021-9525 1540-8140 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2173828 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Animals Antibodies Binding, Competitive - physiology Brain Brain - metabolism Brain - ultrastructure Cells, Cultured Cellular biology Colchicine - pharmacology COS cells Cytoskeletal Proteins - genetics Cytoskeletal Proteins - metabolism Cytoskeletal Proteins - ultrastructure Cytoskeleton Fluorescent Antibody Technique Giant axonal neuropathy Heredodegenerative Disorders, Nervous System - genetics Heredodegenerative Disorders, Nervous System - metabolism Heredodegenerative Disorders, Nervous System - physiopathology Mice Microscopy, Electron Microtubule associated proteins Microtubule-Associated Proteins - genetics Microtubule-Associated Proteins - metabolism Microtubule-Associated Proteins - ultrastructure Microtubules Microtubules - genetics Microtubules - metabolism Microtubules - ultrastructure Mutation - physiology Nervous System - metabolism Nervous System - physiopathology Nervous System - ultrastructure Neurodegenerative diseases Neurological disorders Neurons Neurons - metabolism Neurons - ultrastructure Protein Binding - physiology Protein Structure, Tertiary - physiology Proteins Transfection Yeasts |
title | Microtubule-Associated Protein 1B: A Neuronal Binding Partner for Gigaxonin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A02%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microtubule-Associated%20Protein%201B:%20A%20Neuronal%20Binding%20Partner%20for%20Gigaxonin&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Ding,%20Jianqing&rft.date=2002-08-05&rft.volume=158&rft.issue=3&rft.spage=427&rft.epage=433&rft.pages=427-433&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.200202055&rft_dat=%3Cjstor_pubme%3E1621265%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217088306&rft_id=info:pmid/12147674&rft_jstor_id=1621265&rfr_iscdi=true |