Yeast Osmosensor Sln1 and Plant Cytokinin Receptor Cre1 Respond to Changes in Turgor Pressure
Very little is known about how cellular osmosensors monitor changes in osmolarity of the environment. Here, we report that in yeast, Sln1 osmosensor histidine kinase monitors changes in turgor pressures. Reductions in turgor caused by either hyperosmotic stress, nystatin, or removal of cell wall act...
Gespeichert in:
Veröffentlicht in: | The Journal of cell biology 2003-06, Vol.161 (6), p.1035-1040 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1040 |
---|---|
container_issue | 6 |
container_start_page | 1035 |
container_title | The Journal of cell biology |
container_volume | 161 |
creator | Reiser, Vladimír Raitt, Desmond C. Saito, Haruo |
description | Very little is known about how cellular osmosensors monitor changes in osmolarity of the environment. Here, we report that in yeast, Sln1 osmosensor histidine kinase monitors changes in turgor pressures. Reductions in turgor caused by either hyperosmotic stress, nystatin, or removal of cell wall activate MAPK Hog1 specifically through the SLN1 branch, but not through the SHO1 branch of the high osmolarity glycerol pathway. The integrity of the periplasmic region of Sln1 was essential for its sensor function. We found that activity of the plant histidine kinase cytokinin response 1 (Cre1) is also regulated by changes in turgor pressure, in a manner identical to that of Sln1, in the presence of cytokinin. We propose that Sln1 and Cre1 are turgor sensors, and that similar turgor-sensing mechanisms might regulate hyperosmotic stress responses both in yeast and plants. |
doi_str_mv | 10.1083/jcb.200301099 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2172993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1621659</jstor_id><sourcerecordid>1621659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-cfc0ee9082652ad73d84c4a8ec7804196d4b5c989fc7944a583a823d86a5ec763</originalsourceid><addsrcrecordid>eNqF0c9LHDEUB_BQWupqe-ytlMGDt7EvP2YmuRRkqFoQFLWHHkrIZt6us51N1mSm4H_vk1207aWnEN6Hl7z3ZewDh2MOWn5e-fmxAJDAwZhXbMYrBaXmCl6zGYDgpalEtcf2c14BgGqUfMv2uNCC10rM2M8f6PJYXOZ1zBhyTMXNEHjhQldcDS6MRfswxl996ENxjR43I4k2Iadb3kRSYyzaOxeWmAsyt1NakrhKmPOU8B17s3BDxve784B9P_16256XF5dn39qTi9Irw8fSLzwgGtCiroTrGtlp5ZXT6BsNipu6U_PKG20WvjFKuUpLpwWp2lVkannAvmz7bqb5GjuPYUxusJvUr116sNH19u9K6O_sMv62gjfCGEkNjnYNUryfMI923WePA60A45RtIxUo2t9_IdcaGpCa4OE_cBWnFGgLT4-CaWohCJVb5FPMOeHi-csc7FO8luK1z_GS__TnnC96lyeBj1uwypTUS72mcmXkI0aJqao</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217097622</pqid></control><display><type>article</type><title>Yeast Osmosensor Sln1 and Plant Cytokinin Receptor Cre1 Respond to Changes in Turgor Pressure</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Reiser, Vladimír ; Raitt, Desmond C. ; Saito, Haruo</creator><creatorcontrib>Reiser, Vladimír ; Raitt, Desmond C. ; Saito, Haruo</creatorcontrib><description>Very little is known about how cellular osmosensors monitor changes in osmolarity of the environment. Here, we report that in yeast, Sln1 osmosensor histidine kinase monitors changes in turgor pressures. Reductions in turgor caused by either hyperosmotic stress, nystatin, or removal of cell wall activate MAPK Hog1 specifically through the SLN1 branch, but not through the SHO1 branch of the high osmolarity glycerol pathway. The integrity of the periplasmic region of Sln1 was essential for its sensor function. We found that activity of the plant histidine kinase cytokinin response 1 (Cre1) is also regulated by changes in turgor pressure, in a manner identical to that of Sln1, in the presence of cytokinin. We propose that Sln1 and Cre1 are turgor sensors, and that similar turgor-sensing mechanisms might regulate hyperosmotic stress responses both in yeast and plants.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.200301099</identifier><identifier>PMID: 12821642</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Arabidopsis Proteins - metabolism ; Cell membranes ; Cell Wall - metabolism ; Cell walls ; Cells ; Cytokinins ; Cytokinins - metabolism ; Cytokinins - pharmacology ; Glycerol - metabolism ; Intracellular Signaling Peptides and Proteins ; Intracranial Pressure - physiology ; Mitogen-Activated Protein Kinases - metabolism ; Nystatin - pharmacology ; Osmotic Pressure ; Phosphorylation ; Plants ; Plasmids ; Protein Kinases - metabolism ; Receptors ; Receptors, Cell Surface - metabolism ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Sensors ; Turgor pressure ; Water-Electrolyte Balance - physiology ; Yeast ; Yeasts</subject><ispartof>The Journal of cell biology, 2003-06, Vol.161 (6), p.1035-1040</ispartof><rights>Copyright 2003 The Rockefeller University Press</rights><rights>Copyright Rockefeller University Press Jun 23, 2003</rights><rights>Copyright © 2003, The Rockefeller University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-cfc0ee9082652ad73d84c4a8ec7804196d4b5c989fc7944a583a823d86a5ec763</citedby><cites>FETCH-LOGICAL-c491t-cfc0ee9082652ad73d84c4a8ec7804196d4b5c989fc7944a583a823d86a5ec763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12821642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reiser, Vladimír</creatorcontrib><creatorcontrib>Raitt, Desmond C.</creatorcontrib><creatorcontrib>Saito, Haruo</creatorcontrib><title>Yeast Osmosensor Sln1 and Plant Cytokinin Receptor Cre1 Respond to Changes in Turgor Pressure</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Very little is known about how cellular osmosensors monitor changes in osmolarity of the environment. Here, we report that in yeast, Sln1 osmosensor histidine kinase monitors changes in turgor pressures. Reductions in turgor caused by either hyperosmotic stress, nystatin, or removal of cell wall activate MAPK Hog1 specifically through the SLN1 branch, but not through the SHO1 branch of the high osmolarity glycerol pathway. The integrity of the periplasmic region of Sln1 was essential for its sensor function. We found that activity of the plant histidine kinase cytokinin response 1 (Cre1) is also regulated by changes in turgor pressure, in a manner identical to that of Sln1, in the presence of cytokinin. We propose that Sln1 and Cre1 are turgor sensors, and that similar turgor-sensing mechanisms might regulate hyperosmotic stress responses both in yeast and plants.</description><subject>Arabidopsis Proteins - metabolism</subject><subject>Cell membranes</subject><subject>Cell Wall - metabolism</subject><subject>Cell walls</subject><subject>Cells</subject><subject>Cytokinins</subject><subject>Cytokinins - metabolism</subject><subject>Cytokinins - pharmacology</subject><subject>Glycerol - metabolism</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>Intracranial Pressure - physiology</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Nystatin - pharmacology</subject><subject>Osmotic Pressure</subject><subject>Phosphorylation</subject><subject>Plants</subject><subject>Plasmids</subject><subject>Protein Kinases - metabolism</subject><subject>Receptors</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sensors</subject><subject>Turgor pressure</subject><subject>Water-Electrolyte Balance - physiology</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9LHDEUB_BQWupqe-ytlMGDt7EvP2YmuRRkqFoQFLWHHkrIZt6us51N1mSm4H_vk1207aWnEN6Hl7z3ZewDh2MOWn5e-fmxAJDAwZhXbMYrBaXmCl6zGYDgpalEtcf2c14BgGqUfMv2uNCC10rM2M8f6PJYXOZ1zBhyTMXNEHjhQldcDS6MRfswxl996ENxjR43I4k2Iadb3kRSYyzaOxeWmAsyt1NakrhKmPOU8B17s3BDxve784B9P_16256XF5dn39qTi9Irw8fSLzwgGtCiroTrGtlp5ZXT6BsNipu6U_PKG20WvjFKuUpLpwWp2lVkannAvmz7bqb5GjuPYUxusJvUr116sNH19u9K6O_sMv62gjfCGEkNjnYNUryfMI923WePA60A45RtIxUo2t9_IdcaGpCa4OE_cBWnFGgLT4-CaWohCJVb5FPMOeHi-csc7FO8luK1z_GS__TnnC96lyeBj1uwypTUS72mcmXkI0aJqao</recordid><startdate>20030623</startdate><enddate>20030623</enddate><creator>Reiser, Vladimír</creator><creator>Raitt, Desmond C.</creator><creator>Saito, Haruo</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030623</creationdate><title>Yeast Osmosensor Sln1 and Plant Cytokinin Receptor Cre1 Respond to Changes in Turgor Pressure</title><author>Reiser, Vladimír ; Raitt, Desmond C. ; Saito, Haruo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-cfc0ee9082652ad73d84c4a8ec7804196d4b5c989fc7944a583a823d86a5ec763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Arabidopsis Proteins - metabolism</topic><topic>Cell membranes</topic><topic>Cell Wall - metabolism</topic><topic>Cell walls</topic><topic>Cells</topic><topic>Cytokinins</topic><topic>Cytokinins - metabolism</topic><topic>Cytokinins - pharmacology</topic><topic>Glycerol - metabolism</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>Intracranial Pressure - physiology</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Nystatin - pharmacology</topic><topic>Osmotic Pressure</topic><topic>Phosphorylation</topic><topic>Plants</topic><topic>Plasmids</topic><topic>Protein Kinases - metabolism</topic><topic>Receptors</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sensors</topic><topic>Turgor pressure</topic><topic>Water-Electrolyte Balance - physiology</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reiser, Vladimír</creatorcontrib><creatorcontrib>Raitt, Desmond C.</creatorcontrib><creatorcontrib>Saito, Haruo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reiser, Vladimír</au><au>Raitt, Desmond C.</au><au>Saito, Haruo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Yeast Osmosensor Sln1 and Plant Cytokinin Receptor Cre1 Respond to Changes in Turgor Pressure</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2003-06-23</date><risdate>2003</risdate><volume>161</volume><issue>6</issue><spage>1035</spage><epage>1040</epage><pages>1035-1040</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>Very little is known about how cellular osmosensors monitor changes in osmolarity of the environment. Here, we report that in yeast, Sln1 osmosensor histidine kinase monitors changes in turgor pressures. Reductions in turgor caused by either hyperosmotic stress, nystatin, or removal of cell wall activate MAPK Hog1 specifically through the SLN1 branch, but not through the SHO1 branch of the high osmolarity glycerol pathway. The integrity of the periplasmic region of Sln1 was essential for its sensor function. We found that activity of the plant histidine kinase cytokinin response 1 (Cre1) is also regulated by changes in turgor pressure, in a manner identical to that of Sln1, in the presence of cytokinin. We propose that Sln1 and Cre1 are turgor sensors, and that similar turgor-sensing mechanisms might regulate hyperosmotic stress responses both in yeast and plants.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>12821642</pmid><doi>10.1083/jcb.200301099</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9525 |
ispartof | The Journal of cell biology, 2003-06, Vol.161 (6), p.1035-1040 |
issn | 0021-9525 1540-8140 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2172993 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Arabidopsis Proteins - metabolism Cell membranes Cell Wall - metabolism Cell walls Cells Cytokinins Cytokinins - metabolism Cytokinins - pharmacology Glycerol - metabolism Intracellular Signaling Peptides and Proteins Intracranial Pressure - physiology Mitogen-Activated Protein Kinases - metabolism Nystatin - pharmacology Osmotic Pressure Phosphorylation Plants Plasmids Protein Kinases - metabolism Receptors Receptors, Cell Surface - metabolism Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - metabolism Sensors Turgor pressure Water-Electrolyte Balance - physiology Yeast Yeasts |
title | Yeast Osmosensor Sln1 and Plant Cytokinin Receptor Cre1 Respond to Changes in Turgor Pressure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T20%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Yeast%20Osmosensor%20Sln1%20and%20Plant%20Cytokinin%20Receptor%20Cre1%20Respond%20to%20Changes%20in%20Turgor%20Pressure&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Reiser,%20Vladim%C3%ADr&rft.date=2003-06-23&rft.volume=161&rft.issue=6&rft.spage=1035&rft.epage=1040&rft.pages=1035-1040&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.200301099&rft_dat=%3Cjstor_pubme%3E1621659%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217097622&rft_id=info:pmid/12821642&rft_jstor_id=1621659&rfr_iscdi=true |