Yeast Osmosensor Sln1 and Plant Cytokinin Receptor Cre1 Respond to Changes in Turgor Pressure

Very little is known about how cellular osmosensors monitor changes in osmolarity of the environment. Here, we report that in yeast, Sln1 osmosensor histidine kinase monitors changes in turgor pressures. Reductions in turgor caused by either hyperosmotic stress, nystatin, or removal of cell wall act...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of cell biology 2003-06, Vol.161 (6), p.1035-1040
Hauptverfasser: Reiser, Vladimír, Raitt, Desmond C., Saito, Haruo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1040
container_issue 6
container_start_page 1035
container_title The Journal of cell biology
container_volume 161
creator Reiser, Vladimír
Raitt, Desmond C.
Saito, Haruo
description Very little is known about how cellular osmosensors monitor changes in osmolarity of the environment. Here, we report that in yeast, Sln1 osmosensor histidine kinase monitors changes in turgor pressures. Reductions in turgor caused by either hyperosmotic stress, nystatin, or removal of cell wall activate MAPK Hog1 specifically through the SLN1 branch, but not through the SHO1 branch of the high osmolarity glycerol pathway. The integrity of the periplasmic region of Sln1 was essential for its sensor function. We found that activity of the plant histidine kinase cytokinin response 1 (Cre1) is also regulated by changes in turgor pressure, in a manner identical to that of Sln1, in the presence of cytokinin. We propose that Sln1 and Cre1 are turgor sensors, and that similar turgor-sensing mechanisms might regulate hyperosmotic stress responses both in yeast and plants.
doi_str_mv 10.1083/jcb.200301099
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2172993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1621659</jstor_id><sourcerecordid>1621659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-cfc0ee9082652ad73d84c4a8ec7804196d4b5c989fc7944a583a823d86a5ec763</originalsourceid><addsrcrecordid>eNqF0c9LHDEUB_BQWupqe-ytlMGDt7EvP2YmuRRkqFoQFLWHHkrIZt6us51N1mSm4H_vk1207aWnEN6Hl7z3ZewDh2MOWn5e-fmxAJDAwZhXbMYrBaXmCl6zGYDgpalEtcf2c14BgGqUfMv2uNCC10rM2M8f6PJYXOZ1zBhyTMXNEHjhQldcDS6MRfswxl996ENxjR43I4k2Iadb3kRSYyzaOxeWmAsyt1NakrhKmPOU8B17s3BDxve784B9P_16256XF5dn39qTi9Irw8fSLzwgGtCiroTrGtlp5ZXT6BsNipu6U_PKG20WvjFKuUpLpwWp2lVkannAvmz7bqb5GjuPYUxusJvUr116sNH19u9K6O_sMv62gjfCGEkNjnYNUryfMI923WePA60A45RtIxUo2t9_IdcaGpCa4OE_cBWnFGgLT4-CaWohCJVb5FPMOeHi-csc7FO8luK1z_GS__TnnC96lyeBj1uwypTUS72mcmXkI0aJqao</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217097622</pqid></control><display><type>article</type><title>Yeast Osmosensor Sln1 and Plant Cytokinin Receptor Cre1 Respond to Changes in Turgor Pressure</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Reiser, Vladimír ; Raitt, Desmond C. ; Saito, Haruo</creator><creatorcontrib>Reiser, Vladimír ; Raitt, Desmond C. ; Saito, Haruo</creatorcontrib><description>Very little is known about how cellular osmosensors monitor changes in osmolarity of the environment. Here, we report that in yeast, Sln1 osmosensor histidine kinase monitors changes in turgor pressures. Reductions in turgor caused by either hyperosmotic stress, nystatin, or removal of cell wall activate MAPK Hog1 specifically through the SLN1 branch, but not through the SHO1 branch of the high osmolarity glycerol pathway. The integrity of the periplasmic region of Sln1 was essential for its sensor function. We found that activity of the plant histidine kinase cytokinin response 1 (Cre1) is also regulated by changes in turgor pressure, in a manner identical to that of Sln1, in the presence of cytokinin. We propose that Sln1 and Cre1 are turgor sensors, and that similar turgor-sensing mechanisms might regulate hyperosmotic stress responses both in yeast and plants.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.200301099</identifier><identifier>PMID: 12821642</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Arabidopsis Proteins - metabolism ; Cell membranes ; Cell Wall - metabolism ; Cell walls ; Cells ; Cytokinins ; Cytokinins - metabolism ; Cytokinins - pharmacology ; Glycerol - metabolism ; Intracellular Signaling Peptides and Proteins ; Intracranial Pressure - physiology ; Mitogen-Activated Protein Kinases - metabolism ; Nystatin - pharmacology ; Osmotic Pressure ; Phosphorylation ; Plants ; Plasmids ; Protein Kinases - metabolism ; Receptors ; Receptors, Cell Surface - metabolism ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Sensors ; Turgor pressure ; Water-Electrolyte Balance - physiology ; Yeast ; Yeasts</subject><ispartof>The Journal of cell biology, 2003-06, Vol.161 (6), p.1035-1040</ispartof><rights>Copyright 2003 The Rockefeller University Press</rights><rights>Copyright Rockefeller University Press Jun 23, 2003</rights><rights>Copyright © 2003, The Rockefeller University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-cfc0ee9082652ad73d84c4a8ec7804196d4b5c989fc7944a583a823d86a5ec763</citedby><cites>FETCH-LOGICAL-c491t-cfc0ee9082652ad73d84c4a8ec7804196d4b5c989fc7944a583a823d86a5ec763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12821642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reiser, Vladimír</creatorcontrib><creatorcontrib>Raitt, Desmond C.</creatorcontrib><creatorcontrib>Saito, Haruo</creatorcontrib><title>Yeast Osmosensor Sln1 and Plant Cytokinin Receptor Cre1 Respond to Changes in Turgor Pressure</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Very little is known about how cellular osmosensors monitor changes in osmolarity of the environment. Here, we report that in yeast, Sln1 osmosensor histidine kinase monitors changes in turgor pressures. Reductions in turgor caused by either hyperosmotic stress, nystatin, or removal of cell wall activate MAPK Hog1 specifically through the SLN1 branch, but not through the SHO1 branch of the high osmolarity glycerol pathway. The integrity of the periplasmic region of Sln1 was essential for its sensor function. We found that activity of the plant histidine kinase cytokinin response 1 (Cre1) is also regulated by changes in turgor pressure, in a manner identical to that of Sln1, in the presence of cytokinin. We propose that Sln1 and Cre1 are turgor sensors, and that similar turgor-sensing mechanisms might regulate hyperosmotic stress responses both in yeast and plants.</description><subject>Arabidopsis Proteins - metabolism</subject><subject>Cell membranes</subject><subject>Cell Wall - metabolism</subject><subject>Cell walls</subject><subject>Cells</subject><subject>Cytokinins</subject><subject>Cytokinins - metabolism</subject><subject>Cytokinins - pharmacology</subject><subject>Glycerol - metabolism</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>Intracranial Pressure - physiology</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Nystatin - pharmacology</subject><subject>Osmotic Pressure</subject><subject>Phosphorylation</subject><subject>Plants</subject><subject>Plasmids</subject><subject>Protein Kinases - metabolism</subject><subject>Receptors</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sensors</subject><subject>Turgor pressure</subject><subject>Water-Electrolyte Balance - physiology</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9LHDEUB_BQWupqe-ytlMGDt7EvP2YmuRRkqFoQFLWHHkrIZt6us51N1mSm4H_vk1207aWnEN6Hl7z3ZewDh2MOWn5e-fmxAJDAwZhXbMYrBaXmCl6zGYDgpalEtcf2c14BgGqUfMv2uNCC10rM2M8f6PJYXOZ1zBhyTMXNEHjhQldcDS6MRfswxl996ENxjR43I4k2Iadb3kRSYyzaOxeWmAsyt1NakrhKmPOU8B17s3BDxve784B9P_16256XF5dn39qTi9Irw8fSLzwgGtCiroTrGtlp5ZXT6BsNipu6U_PKG20WvjFKuUpLpwWp2lVkannAvmz7bqb5GjuPYUxusJvUr116sNH19u9K6O_sMv62gjfCGEkNjnYNUryfMI923WePA60A45RtIxUo2t9_IdcaGpCa4OE_cBWnFGgLT4-CaWohCJVb5FPMOeHi-csc7FO8luK1z_GS__TnnC96lyeBj1uwypTUS72mcmXkI0aJqao</recordid><startdate>20030623</startdate><enddate>20030623</enddate><creator>Reiser, Vladimír</creator><creator>Raitt, Desmond C.</creator><creator>Saito, Haruo</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030623</creationdate><title>Yeast Osmosensor Sln1 and Plant Cytokinin Receptor Cre1 Respond to Changes in Turgor Pressure</title><author>Reiser, Vladimír ; Raitt, Desmond C. ; Saito, Haruo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-cfc0ee9082652ad73d84c4a8ec7804196d4b5c989fc7944a583a823d86a5ec763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Arabidopsis Proteins - metabolism</topic><topic>Cell membranes</topic><topic>Cell Wall - metabolism</topic><topic>Cell walls</topic><topic>Cells</topic><topic>Cytokinins</topic><topic>Cytokinins - metabolism</topic><topic>Cytokinins - pharmacology</topic><topic>Glycerol - metabolism</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>Intracranial Pressure - physiology</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Nystatin - pharmacology</topic><topic>Osmotic Pressure</topic><topic>Phosphorylation</topic><topic>Plants</topic><topic>Plasmids</topic><topic>Protein Kinases - metabolism</topic><topic>Receptors</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sensors</topic><topic>Turgor pressure</topic><topic>Water-Electrolyte Balance - physiology</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reiser, Vladimír</creatorcontrib><creatorcontrib>Raitt, Desmond C.</creatorcontrib><creatorcontrib>Saito, Haruo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reiser, Vladimír</au><au>Raitt, Desmond C.</au><au>Saito, Haruo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Yeast Osmosensor Sln1 and Plant Cytokinin Receptor Cre1 Respond to Changes in Turgor Pressure</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2003-06-23</date><risdate>2003</risdate><volume>161</volume><issue>6</issue><spage>1035</spage><epage>1040</epage><pages>1035-1040</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>Very little is known about how cellular osmosensors monitor changes in osmolarity of the environment. Here, we report that in yeast, Sln1 osmosensor histidine kinase monitors changes in turgor pressures. Reductions in turgor caused by either hyperosmotic stress, nystatin, or removal of cell wall activate MAPK Hog1 specifically through the SLN1 branch, but not through the SHO1 branch of the high osmolarity glycerol pathway. The integrity of the periplasmic region of Sln1 was essential for its sensor function. We found that activity of the plant histidine kinase cytokinin response 1 (Cre1) is also regulated by changes in turgor pressure, in a manner identical to that of Sln1, in the presence of cytokinin. We propose that Sln1 and Cre1 are turgor sensors, and that similar turgor-sensing mechanisms might regulate hyperosmotic stress responses both in yeast and plants.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>12821642</pmid><doi>10.1083/jcb.200301099</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9525
ispartof The Journal of cell biology, 2003-06, Vol.161 (6), p.1035-1040
issn 0021-9525
1540-8140
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2172993
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Arabidopsis Proteins - metabolism
Cell membranes
Cell Wall - metabolism
Cell walls
Cells
Cytokinins
Cytokinins - metabolism
Cytokinins - pharmacology
Glycerol - metabolism
Intracellular Signaling Peptides and Proteins
Intracranial Pressure - physiology
Mitogen-Activated Protein Kinases - metabolism
Nystatin - pharmacology
Osmotic Pressure
Phosphorylation
Plants
Plasmids
Protein Kinases - metabolism
Receptors
Receptors, Cell Surface - metabolism
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - metabolism
Sensors
Turgor pressure
Water-Electrolyte Balance - physiology
Yeast
Yeasts
title Yeast Osmosensor Sln1 and Plant Cytokinin Receptor Cre1 Respond to Changes in Turgor Pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T20%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Yeast%20Osmosensor%20Sln1%20and%20Plant%20Cytokinin%20Receptor%20Cre1%20Respond%20to%20Changes%20in%20Turgor%20Pressure&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Reiser,%20Vladim%C3%ADr&rft.date=2003-06-23&rft.volume=161&rft.issue=6&rft.spage=1035&rft.epage=1040&rft.pages=1035-1040&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.200301099&rft_dat=%3Cjstor_pubme%3E1621659%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217097622&rft_id=info:pmid/12821642&rft_jstor_id=1621659&rfr_iscdi=true