Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis

Centrosomes act as sites of microtubule growth, but little is known about how the number and stability of microtubules emanating from a centrosome are controlled during the cell cycle. We studied the role of the TACC3-XMAP215 complex in this process by using purified proteins and Xenopus laevis egg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of cell biology 2005-09, Vol.170 (7), p.1047-1055
Hauptverfasser: Kinoshita, Kazuhisa, Noetzel, Tim L, Pelletier, Laurence, Mechtler, Karl, Drechsel, David N, Schwager, Anne, Lee, Mike, Raff, Jordan W, Hyman, Anthony A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1055
container_issue 7
container_start_page 1047
container_title The Journal of cell biology
container_volume 170
creator Kinoshita, Kazuhisa
Noetzel, Tim L
Pelletier, Laurence
Mechtler, Karl
Drechsel, David N
Schwager, Anne
Lee, Mike
Raff, Jordan W
Hyman, Anthony A
description Centrosomes act as sites of microtubule growth, but little is known about how the number and stability of microtubules emanating from a centrosome are controlled during the cell cycle. We studied the role of the TACC3-XMAP215 complex in this process by using purified proteins and Xenopus laevis egg extracts. We show that TACC3 forms a one-to-one complex with and enhances the microtubule-stabilizing activity of XMAP215 in vitro. TACC3 enhances the number of microtubules emanating from mitotic centrosomes, and its targeting to centrosomes is regulated by Aurora A-dependent phosphorylation. We propose that Aurora A regulation of TACC3 activity defines a centrosome-specific mechanism for regulation of microtubule polymerization in mitosis.
doi_str_mv 10.1083/jcb.200503023
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2171544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3658318</jstor_id><sourcerecordid>3658318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-c08ad5a9ad2338a865f0c66776c32d30747a623c900d0afc178eaa62358c5c9f3</originalsourceid><addsrcrecordid>eNqFkUtvEzEUhS0EoqGwZIfAYsFu2mt7_JhNpSjiJVViQbu2bjye1mFmnNozSPn3OE0UHhsWlmXfz_cen0PIawYXDIy43Lj1BQeQIICLJ2TBZA2VYTU8JQsAzqpGcnlGXuS8AYBa1-I5OWOKac5BLsiwnFNMSJd0ex9zWWnX4xTiSGNHb5arlbgcMP8IIw2ZJv8wh-Rb2sVEnR-nFHMcfNX6rR_bcqZDcClO83ruPcWc_bDud7Q8HsIUc8gvybMO--xfHfdzcvvp483qS3X97fPX1fK6clLWU-XAYCuxwZYLYdAo2YFTSmvlBG8F6Fqj4sI1AC1g55g2Hvc30jjpmk6ck6tD3-28Hnz7KBV7u01hwLSzEYP9uzKGe3sXf1rOdDGwLg0-HBuk-DD7PNkhZOf7Hkcf52yVUdw0Gv4LctC8kcYU8P0_4CbOaSwuPA4teRhdoOoAFRdzTr47SWZg93HbErc9xV34t3_-8zd9zLcAbw7AJk8xnepCSSPYXtS7Q7nDaPEuhWxvv3NgAlgZ0DRc_AKrnbnC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217117287</pqid></control><display><type>article</type><title>Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Kinoshita, Kazuhisa ; Noetzel, Tim L ; Pelletier, Laurence ; Mechtler, Karl ; Drechsel, David N ; Schwager, Anne ; Lee, Mike ; Raff, Jordan W ; Hyman, Anthony A</creator><creatorcontrib>Kinoshita, Kazuhisa ; Noetzel, Tim L ; Pelletier, Laurence ; Mechtler, Karl ; Drechsel, David N ; Schwager, Anne ; Lee, Mike ; Raff, Jordan W ; Hyman, Anthony A</creatorcontrib><description>Centrosomes act as sites of microtubule growth, but little is known about how the number and stability of microtubules emanating from a centrosome are controlled during the cell cycle. We studied the role of the TACC3-XMAP215 complex in this process by using purified proteins and Xenopus laevis egg extracts. We show that TACC3 forms a one-to-one complex with and enhances the microtubule-stabilizing activity of XMAP215 in vitro. TACC3 enhances the number of microtubules emanating from mitotic centrosomes, and its targeting to centrosomes is regulated by Aurora A-dependent phosphorylation. We propose that Aurora A regulation of TACC3 activity defines a centrosome-specific mechanism for regulation of microtubule polymerization in mitosis.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.200503023</identifier><identifier>PMID: 16172205</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Animals ; Antibodies ; Aurora Kinases ; Cell cycle ; Cell Cycle Proteins - physiology ; Cell Extracts ; Cells ; Cellular biology ; Centrosome - physiology ; Centrosomes ; Eggs ; Gene expression regulation ; Kinesin - metabolism ; Microtubule-Associated Proteins - metabolism ; Microtubule-Associated Proteins - physiology ; Microtubules ; Microtubules - chemistry ; Microtubules - metabolism ; Mitosis ; Mitotic spindle apparatus ; Oocytes - chemistry ; Phosphorylation ; Polymers ; Protein Kinases - physiology ; Protein-Serine-Threonine Kinases ; Proteins ; Transcription Factors - physiology ; Xenopus laevis ; Xenopus Proteins - metabolism ; Xenopus Proteins - physiology</subject><ispartof>The Journal of cell biology, 2005-09, Vol.170 (7), p.1047-1055</ispartof><rights>Copyright 2005 The Rockefeller University Press</rights><rights>Copyright Rockefeller University Press Sep 26, 2005</rights><rights>Copyright © 2005, The Rockefeller University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-c08ad5a9ad2338a865f0c66776c32d30747a623c900d0afc178eaa62358c5c9f3</citedby><cites>FETCH-LOGICAL-c554t-c08ad5a9ad2338a865f0c66776c32d30747a623c900d0afc178eaa62358c5c9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16172205$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kinoshita, Kazuhisa</creatorcontrib><creatorcontrib>Noetzel, Tim L</creatorcontrib><creatorcontrib>Pelletier, Laurence</creatorcontrib><creatorcontrib>Mechtler, Karl</creatorcontrib><creatorcontrib>Drechsel, David N</creatorcontrib><creatorcontrib>Schwager, Anne</creatorcontrib><creatorcontrib>Lee, Mike</creatorcontrib><creatorcontrib>Raff, Jordan W</creatorcontrib><creatorcontrib>Hyman, Anthony A</creatorcontrib><title>Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Centrosomes act as sites of microtubule growth, but little is known about how the number and stability of microtubules emanating from a centrosome are controlled during the cell cycle. We studied the role of the TACC3-XMAP215 complex in this process by using purified proteins and Xenopus laevis egg extracts. We show that TACC3 forms a one-to-one complex with and enhances the microtubule-stabilizing activity of XMAP215 in vitro. TACC3 enhances the number of microtubules emanating from mitotic centrosomes, and its targeting to centrosomes is regulated by Aurora A-dependent phosphorylation. We propose that Aurora A regulation of TACC3 activity defines a centrosome-specific mechanism for regulation of microtubule polymerization in mitosis.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Aurora Kinases</subject><subject>Cell cycle</subject><subject>Cell Cycle Proteins - physiology</subject><subject>Cell Extracts</subject><subject>Cells</subject><subject>Cellular biology</subject><subject>Centrosome - physiology</subject><subject>Centrosomes</subject><subject>Eggs</subject><subject>Gene expression regulation</subject><subject>Kinesin - metabolism</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Microtubule-Associated Proteins - physiology</subject><subject>Microtubules</subject><subject>Microtubules - chemistry</subject><subject>Microtubules - metabolism</subject><subject>Mitosis</subject><subject>Mitotic spindle apparatus</subject><subject>Oocytes - chemistry</subject><subject>Phosphorylation</subject><subject>Polymers</subject><subject>Protein Kinases - physiology</subject><subject>Protein-Serine-Threonine Kinases</subject><subject>Proteins</subject><subject>Transcription Factors - physiology</subject><subject>Xenopus laevis</subject><subject>Xenopus Proteins - metabolism</subject><subject>Xenopus Proteins - physiology</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtvEzEUhS0EoqGwZIfAYsFu2mt7_JhNpSjiJVViQbu2bjye1mFmnNozSPn3OE0UHhsWlmXfz_cen0PIawYXDIy43Lj1BQeQIICLJ2TBZA2VYTU8JQsAzqpGcnlGXuS8AYBa1-I5OWOKac5BLsiwnFNMSJd0ex9zWWnX4xTiSGNHb5arlbgcMP8IIw2ZJv8wh-Rb2sVEnR-nFHMcfNX6rR_bcqZDcClO83ruPcWc_bDud7Q8HsIUc8gvybMO--xfHfdzcvvp483qS3X97fPX1fK6clLWU-XAYCuxwZYLYdAo2YFTSmvlBG8F6Fqj4sI1AC1g55g2Hvc30jjpmk6ck6tD3-28Hnz7KBV7u01hwLSzEYP9uzKGe3sXf1rOdDGwLg0-HBuk-DD7PNkhZOf7Hkcf52yVUdw0Gv4LctC8kcYU8P0_4CbOaSwuPA4teRhdoOoAFRdzTr47SWZg93HbErc9xV34t3_-8zd9zLcAbw7AJk8xnepCSSPYXtS7Q7nDaPEuhWxvv3NgAlgZ0DRc_AKrnbnC</recordid><startdate>20050926</startdate><enddate>20050926</enddate><creator>Kinoshita, Kazuhisa</creator><creator>Noetzel, Tim L</creator><creator>Pelletier, Laurence</creator><creator>Mechtler, Karl</creator><creator>Drechsel, David N</creator><creator>Schwager, Anne</creator><creator>Lee, Mike</creator><creator>Raff, Jordan W</creator><creator>Hyman, Anthony A</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050926</creationdate><title>Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis</title><author>Kinoshita, Kazuhisa ; Noetzel, Tim L ; Pelletier, Laurence ; Mechtler, Karl ; Drechsel, David N ; Schwager, Anne ; Lee, Mike ; Raff, Jordan W ; Hyman, Anthony A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-c08ad5a9ad2338a865f0c66776c32d30747a623c900d0afc178eaa62358c5c9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Aurora Kinases</topic><topic>Cell cycle</topic><topic>Cell Cycle Proteins - physiology</topic><topic>Cell Extracts</topic><topic>Cells</topic><topic>Cellular biology</topic><topic>Centrosome - physiology</topic><topic>Centrosomes</topic><topic>Eggs</topic><topic>Gene expression regulation</topic><topic>Kinesin - metabolism</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Microtubule-Associated Proteins - physiology</topic><topic>Microtubules</topic><topic>Microtubules - chemistry</topic><topic>Microtubules - metabolism</topic><topic>Mitosis</topic><topic>Mitotic spindle apparatus</topic><topic>Oocytes - chemistry</topic><topic>Phosphorylation</topic><topic>Polymers</topic><topic>Protein Kinases - physiology</topic><topic>Protein-Serine-Threonine Kinases</topic><topic>Proteins</topic><topic>Transcription Factors - physiology</topic><topic>Xenopus laevis</topic><topic>Xenopus Proteins - metabolism</topic><topic>Xenopus Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinoshita, Kazuhisa</creatorcontrib><creatorcontrib>Noetzel, Tim L</creatorcontrib><creatorcontrib>Pelletier, Laurence</creatorcontrib><creatorcontrib>Mechtler, Karl</creatorcontrib><creatorcontrib>Drechsel, David N</creatorcontrib><creatorcontrib>Schwager, Anne</creatorcontrib><creatorcontrib>Lee, Mike</creatorcontrib><creatorcontrib>Raff, Jordan W</creatorcontrib><creatorcontrib>Hyman, Anthony A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinoshita, Kazuhisa</au><au>Noetzel, Tim L</au><au>Pelletier, Laurence</au><au>Mechtler, Karl</au><au>Drechsel, David N</au><au>Schwager, Anne</au><au>Lee, Mike</au><au>Raff, Jordan W</au><au>Hyman, Anthony A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2005-09-26</date><risdate>2005</risdate><volume>170</volume><issue>7</issue><spage>1047</spage><epage>1055</epage><pages>1047-1055</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>Centrosomes act as sites of microtubule growth, but little is known about how the number and stability of microtubules emanating from a centrosome are controlled during the cell cycle. We studied the role of the TACC3-XMAP215 complex in this process by using purified proteins and Xenopus laevis egg extracts. We show that TACC3 forms a one-to-one complex with and enhances the microtubule-stabilizing activity of XMAP215 in vitro. TACC3 enhances the number of microtubules emanating from mitotic centrosomes, and its targeting to centrosomes is regulated by Aurora A-dependent phosphorylation. We propose that Aurora A regulation of TACC3 activity defines a centrosome-specific mechanism for regulation of microtubule polymerization in mitosis.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>16172205</pmid><doi>10.1083/jcb.200503023</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9525
ispartof The Journal of cell biology, 2005-09, Vol.170 (7), p.1047-1055
issn 0021-9525
1540-8140
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2171544
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Antibodies
Aurora Kinases
Cell cycle
Cell Cycle Proteins - physiology
Cell Extracts
Cells
Cellular biology
Centrosome - physiology
Centrosomes
Eggs
Gene expression regulation
Kinesin - metabolism
Microtubule-Associated Proteins - metabolism
Microtubule-Associated Proteins - physiology
Microtubules
Microtubules - chemistry
Microtubules - metabolism
Mitosis
Mitotic spindle apparatus
Oocytes - chemistry
Phosphorylation
Polymers
Protein Kinases - physiology
Protein-Serine-Threonine Kinases
Proteins
Transcription Factors - physiology
Xenopus laevis
Xenopus Proteins - metabolism
Xenopus Proteins - physiology
title Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aurora%20A%20phosphorylation%20of%20TACC3/maskin%20is%20required%20for%20centrosome-dependent%20microtubule%20assembly%20in%20mitosis&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Kinoshita,%20Kazuhisa&rft.date=2005-09-26&rft.volume=170&rft.issue=7&rft.spage=1047&rft.epage=1055&rft.pages=1047-1055&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.200503023&rft_dat=%3Cjstor_pubme%3E3658318%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217117287&rft_id=info:pmid/16172205&rft_jstor_id=3658318&rfr_iscdi=true