mobile nucleoporin Nup2p and chromatin-bound Prp20p function in endogenous NPC-mediated transcriptional control
Nuclear pore complexes (NPCs) govern macromolecular transport between the nucleus and cytoplasm and serve as key positional markers within the nucleus. Several protein components of yeast NPCs have been implicated in the epigenetic control of gene expression. Among these, Nup2p is unique as it trans...
Gespeichert in:
Veröffentlicht in: | The Journal of cell biology 2005-12, Vol.171 (6), p.955-965 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 965 |
---|---|
container_issue | 6 |
container_start_page | 955 |
container_title | The Journal of cell biology |
container_volume | 171 |
creator | Dilworth, David J Tackett, Alan J Rogers, Richard S Yi, Eugene C Christmas, Rowan H Smith, Jennifer J Siegel, Andrew F Chait, Brian T Wozniak, Richard W Aitchison, John D |
description | Nuclear pore complexes (NPCs) govern macromolecular transport between the nucleus and cytoplasm and serve as key positional markers within the nucleus. Several protein components of yeast NPCs have been implicated in the epigenetic control of gene expression. Among these, Nup2p is unique as it transiently associates with NPCs and, when artificially tethered to DNA, can prevent the spread of transcriptional activation or repression between flanking genes, a function termed boundary activity. To understand this function of Nup2p, we investigated the interactions of Nup2p with other proteins and with DNA using immunopurifications coupled with mass spectrometry and microarray analyses. These data combined with functional assays of boundary activity and epigenetic variegation suggest that Nup2p and the Ran guanylyl-nucleotide exchange factor, Prp20p, interact at specific chromatin regions and enable the NPC to play an active role in chromatin organization by facilitating the transition of chromatin between activity states. |
doi_str_mv | 10.1083/jcb.200509061 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2171315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3658427</jstor_id><sourcerecordid>3658427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-d1a4afbdd8ae277931c3e8793c06ea3743d162f6656f235bc557faa103468db93</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EotvCkRuCiAO3tGM7dpxLJbSigFS1laBny3GcrVeJHewEiX_fWe1qoVw4jaz3eebNPELeUDinoPjF1rbnDEBAA5I-IysqKigVreA5WQEwWjaCiRNymvMWAKq64i_JCZVcCirZisQxtn5wRVjs4OIUkw_FzTKxqTChK-xDiqOZfSjbuOD7Lk0MpqJfgp19DAXCLnRx40JccnFzty5H13kzu66YkwnZJj_tQDMUNoY5xeEVedGbIbvXh3pG7q8-_1h_La9vv3xbf7ourRDVXHbUVKZvu04Zx-q64dRyp7BakM5w3KJD-72UQvaMixZ_1b0xFHglVdc2_Ixc7vtOS4uerMPpZtBT8qNJv3U0Xj9Vgn_Qm_hLM1pTTgU2-HhokOLPxeVZjz5bNwwmOFxWS9XgkZX6L0jritVAOYIf_gG3cUl4m7wbCo1qxG5suYdsijkn1x8tU9C7wDUGro-BI__u7z3_0IeEEXi7B7Z5jumoo6rQF8rv93Jvojab5LO-_87QLlCoJOc1fwTdLrrC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217098955</pqid></control><display><type>article</type><title>mobile nucleoporin Nup2p and chromatin-bound Prp20p function in endogenous NPC-mediated transcriptional control</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Dilworth, David J ; Tackett, Alan J ; Rogers, Richard S ; Yi, Eugene C ; Christmas, Rowan H ; Smith, Jennifer J ; Siegel, Andrew F ; Chait, Brian T ; Wozniak, Richard W ; Aitchison, John D</creator><creatorcontrib>Dilworth, David J ; Tackett, Alan J ; Rogers, Richard S ; Yi, Eugene C ; Christmas, Rowan H ; Smith, Jennifer J ; Siegel, Andrew F ; Chait, Brian T ; Wozniak, Richard W ; Aitchison, John D</creatorcontrib><description>Nuclear pore complexes (NPCs) govern macromolecular transport between the nucleus and cytoplasm and serve as key positional markers within the nucleus. Several protein components of yeast NPCs have been implicated in the epigenetic control of gene expression. Among these, Nup2p is unique as it transiently associates with NPCs and, when artificially tethered to DNA, can prevent the spread of transcriptional activation or repression between flanking genes, a function termed boundary activity. To understand this function of Nup2p, we investigated the interactions of Nup2p with other proteins and with DNA using immunopurifications coupled with mass spectrometry and microarray analyses. These data combined with functional assays of boundary activity and epigenetic variegation suggest that Nup2p and the Ran guanylyl-nucleotide exchange factor, Prp20p, interact at specific chromatin regions and enable the NPC to play an active role in chromatin organization by facilitating the transition of chromatin between activity states.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.200509061</identifier><identifier>PMID: 16365162</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Active Transport, Cell Nucleus - physiology ; Cellular biology ; Chromatin ; Chromatin - genetics ; Chromatin - metabolism ; DNA ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Gene expression ; Gene Silencing - physiology ; Genes ; Guanine Nucleotide Exchange Factors ; Histones ; Histones - genetics ; Histones - metabolism ; Intergenic DNA ; Microarray Analysis ; Models, Biological ; Nuclear pore ; Nuclear Pore - genetics ; Nuclear Pore - metabolism ; Nuclear pore complex proteins ; Nuclear Pore Complex Proteins - genetics ; Nuclear Pore Complex Proteins - metabolism ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Nucleosomes - metabolism ; Open reading frames ; Open Reading Frames - genetics ; Plasmids ; Proteins ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Telomere - genetics ; Telomere - metabolism ; Transcription, Genetic - physiology ; Yeast ; Yeasts</subject><ispartof>The Journal of cell biology, 2005-12, Vol.171 (6), p.955-965</ispartof><rights>Copyright 2005 The Rockefeller University Press</rights><rights>Copyright Rockefeller University Press Dec 19, 2005</rights><rights>Copyright © 2005, The Rockefeller University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-d1a4afbdd8ae277931c3e8793c06ea3743d162f6656f235bc557faa103468db93</citedby><cites>FETCH-LOGICAL-c554t-d1a4afbdd8ae277931c3e8793c06ea3743d162f6656f235bc557faa103468db93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16365162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dilworth, David J</creatorcontrib><creatorcontrib>Tackett, Alan J</creatorcontrib><creatorcontrib>Rogers, Richard S</creatorcontrib><creatorcontrib>Yi, Eugene C</creatorcontrib><creatorcontrib>Christmas, Rowan H</creatorcontrib><creatorcontrib>Smith, Jennifer J</creatorcontrib><creatorcontrib>Siegel, Andrew F</creatorcontrib><creatorcontrib>Chait, Brian T</creatorcontrib><creatorcontrib>Wozniak, Richard W</creatorcontrib><creatorcontrib>Aitchison, John D</creatorcontrib><title>mobile nucleoporin Nup2p and chromatin-bound Prp20p function in endogenous NPC-mediated transcriptional control</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Nuclear pore complexes (NPCs) govern macromolecular transport between the nucleus and cytoplasm and serve as key positional markers within the nucleus. Several protein components of yeast NPCs have been implicated in the epigenetic control of gene expression. Among these, Nup2p is unique as it transiently associates with NPCs and, when artificially tethered to DNA, can prevent the spread of transcriptional activation or repression between flanking genes, a function termed boundary activity. To understand this function of Nup2p, we investigated the interactions of Nup2p with other proteins and with DNA using immunopurifications coupled with mass spectrometry and microarray analyses. These data combined with functional assays of boundary activity and epigenetic variegation suggest that Nup2p and the Ran guanylyl-nucleotide exchange factor, Prp20p, interact at specific chromatin regions and enable the NPC to play an active role in chromatin organization by facilitating the transition of chromatin between activity states.</description><subject>Active Transport, Cell Nucleus - physiology</subject><subject>Cellular biology</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>DNA</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Gene expression</subject><subject>Gene Silencing - physiology</subject><subject>Genes</subject><subject>Guanine Nucleotide Exchange Factors</subject><subject>Histones</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Intergenic DNA</subject><subject>Microarray Analysis</subject><subject>Models, Biological</subject><subject>Nuclear pore</subject><subject>Nuclear Pore - genetics</subject><subject>Nuclear Pore - metabolism</subject><subject>Nuclear pore complex proteins</subject><subject>Nuclear Pore Complex Proteins - genetics</subject><subject>Nuclear Pore Complex Proteins - metabolism</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Nucleosomes - metabolism</subject><subject>Open reading frames</subject><subject>Open Reading Frames - genetics</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Telomere - genetics</subject><subject>Telomere - metabolism</subject><subject>Transcription, Genetic - physiology</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EotvCkRuCiAO3tGM7dpxLJbSigFS1laBny3GcrVeJHewEiX_fWe1qoVw4jaz3eebNPELeUDinoPjF1rbnDEBAA5I-IysqKigVreA5WQEwWjaCiRNymvMWAKq64i_JCZVcCirZisQxtn5wRVjs4OIUkw_FzTKxqTChK-xDiqOZfSjbuOD7Lk0MpqJfgp19DAXCLnRx40JccnFzty5H13kzu66YkwnZJj_tQDMUNoY5xeEVedGbIbvXh3pG7q8-_1h_La9vv3xbf7ourRDVXHbUVKZvu04Zx-q64dRyp7BakM5w3KJD-72UQvaMixZ_1b0xFHglVdc2_Ixc7vtOS4uerMPpZtBT8qNJv3U0Xj9Vgn_Qm_hLM1pTTgU2-HhokOLPxeVZjz5bNwwmOFxWS9XgkZX6L0jritVAOYIf_gG3cUl4m7wbCo1qxG5suYdsijkn1x8tU9C7wDUGro-BI__u7z3_0IeEEXi7B7Z5jumoo6rQF8rv93Jvojab5LO-_87QLlCoJOc1fwTdLrrC</recordid><startdate>20051219</startdate><enddate>20051219</enddate><creator>Dilworth, David J</creator><creator>Tackett, Alan J</creator><creator>Rogers, Richard S</creator><creator>Yi, Eugene C</creator><creator>Christmas, Rowan H</creator><creator>Smith, Jennifer J</creator><creator>Siegel, Andrew F</creator><creator>Chait, Brian T</creator><creator>Wozniak, Richard W</creator><creator>Aitchison, John D</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20051219</creationdate><title>mobile nucleoporin Nup2p and chromatin-bound Prp20p function in endogenous NPC-mediated transcriptional control</title><author>Dilworth, David J ; Tackett, Alan J ; Rogers, Richard S ; Yi, Eugene C ; Christmas, Rowan H ; Smith, Jennifer J ; Siegel, Andrew F ; Chait, Brian T ; Wozniak, Richard W ; Aitchison, John D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-d1a4afbdd8ae277931c3e8793c06ea3743d162f6656f235bc557faa103468db93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Active Transport, Cell Nucleus - physiology</topic><topic>Cellular biology</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>DNA</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Gene expression</topic><topic>Gene Silencing - physiology</topic><topic>Genes</topic><topic>Guanine Nucleotide Exchange Factors</topic><topic>Histones</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Intergenic DNA</topic><topic>Microarray Analysis</topic><topic>Models, Biological</topic><topic>Nuclear pore</topic><topic>Nuclear Pore - genetics</topic><topic>Nuclear Pore - metabolism</topic><topic>Nuclear pore complex proteins</topic><topic>Nuclear Pore Complex Proteins - genetics</topic><topic>Nuclear Pore Complex Proteins - metabolism</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Nucleosomes - metabolism</topic><topic>Open reading frames</topic><topic>Open Reading Frames - genetics</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Telomere - genetics</topic><topic>Telomere - metabolism</topic><topic>Transcription, Genetic - physiology</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dilworth, David J</creatorcontrib><creatorcontrib>Tackett, Alan J</creatorcontrib><creatorcontrib>Rogers, Richard S</creatorcontrib><creatorcontrib>Yi, Eugene C</creatorcontrib><creatorcontrib>Christmas, Rowan H</creatorcontrib><creatorcontrib>Smith, Jennifer J</creatorcontrib><creatorcontrib>Siegel, Andrew F</creatorcontrib><creatorcontrib>Chait, Brian T</creatorcontrib><creatorcontrib>Wozniak, Richard W</creatorcontrib><creatorcontrib>Aitchison, John D</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dilworth, David J</au><au>Tackett, Alan J</au><au>Rogers, Richard S</au><au>Yi, Eugene C</au><au>Christmas, Rowan H</au><au>Smith, Jennifer J</au><au>Siegel, Andrew F</au><au>Chait, Brian T</au><au>Wozniak, Richard W</au><au>Aitchison, John D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mobile nucleoporin Nup2p and chromatin-bound Prp20p function in endogenous NPC-mediated transcriptional control</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2005-12-19</date><risdate>2005</risdate><volume>171</volume><issue>6</issue><spage>955</spage><epage>965</epage><pages>955-965</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>Nuclear pore complexes (NPCs) govern macromolecular transport between the nucleus and cytoplasm and serve as key positional markers within the nucleus. Several protein components of yeast NPCs have been implicated in the epigenetic control of gene expression. Among these, Nup2p is unique as it transiently associates with NPCs and, when artificially tethered to DNA, can prevent the spread of transcriptional activation or repression between flanking genes, a function termed boundary activity. To understand this function of Nup2p, we investigated the interactions of Nup2p with other proteins and with DNA using immunopurifications coupled with mass spectrometry and microarray analyses. These data combined with functional assays of boundary activity and epigenetic variegation suggest that Nup2p and the Ran guanylyl-nucleotide exchange factor, Prp20p, interact at specific chromatin regions and enable the NPC to play an active role in chromatin organization by facilitating the transition of chromatin between activity states.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>16365162</pmid><doi>10.1083/jcb.200509061</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9525 |
ispartof | The Journal of cell biology, 2005-12, Vol.171 (6), p.955-965 |
issn | 0021-9525 1540-8140 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2171315 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Active Transport, Cell Nucleus - physiology Cellular biology Chromatin Chromatin - genetics Chromatin - metabolism DNA DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Gene expression Gene Silencing - physiology Genes Guanine Nucleotide Exchange Factors Histones Histones - genetics Histones - metabolism Intergenic DNA Microarray Analysis Models, Biological Nuclear pore Nuclear Pore - genetics Nuclear Pore - metabolism Nuclear pore complex proteins Nuclear Pore Complex Proteins - genetics Nuclear Pore Complex Proteins - metabolism Nuclear Proteins - genetics Nuclear Proteins - metabolism Nucleosomes - metabolism Open reading frames Open Reading Frames - genetics Plasmids Proteins Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Telomere - genetics Telomere - metabolism Transcription, Genetic - physiology Yeast Yeasts |
title | mobile nucleoporin Nup2p and chromatin-bound Prp20p function in endogenous NPC-mediated transcriptional control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A08%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mobile%20nucleoporin%20Nup2p%20and%20chromatin-bound%20Prp20p%20function%20in%20endogenous%20NPC-mediated%20transcriptional%20control&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Dilworth,%20David%20J&rft.date=2005-12-19&rft.volume=171&rft.issue=6&rft.spage=955&rft.epage=965&rft.pages=955-965&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.200509061&rft_dat=%3Cjstor_pubme%3E3658427%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217098955&rft_id=info:pmid/16365162&rft_jstor_id=3658427&rfr_iscdi=true |