Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles
Abstract This study investigates methods of manipulating the brain extracellular matrix (ECM) to enhance the penetration of nanoparticle drug carriers in convection-enhanced delivery (CED). A probe was fabricated with two independent microfluidic channels to infuse, either simultaneously or sequenti...
Gespeichert in:
Veröffentlicht in: | Brain research 2007-11, Vol.1180, p.121-132 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 132 |
---|---|
container_issue | |
container_start_page | 121 |
container_title | Brain research |
container_volume | 1180 |
creator | Neeves, Keith B Sawyer, Andrew J Foley, Conor P Saltzman, W. Mark Olbricht, William L |
description | Abstract This study investigates methods of manipulating the brain extracellular matrix (ECM) to enhance the penetration of nanoparticle drug carriers in convection-enhanced delivery (CED). A probe was fabricated with two independent microfluidic channels to infuse, either simultaneously or sequentially, nanoparticles and ECM-modifying agents. Infusions were performed in the striatum of the normal rat brain. Monodisperse polystyrene particles with a diameter of 54 nm were used as a model nanoparticle system. Because the size of these particles is comparable to the effective pore size of the ECM, their transport may be significantly hindered compared with the transport of low molecular weight molecules. To enhance the transport of the infused nanoparticles, we attempted to increase the effective pore size of the ECM by two methods: dilating the extracellular space and degrading selected constituents of the ECM. Two methods of dilating the extracellular space were investigated: co-infusion of nanoparticles and a hyperosmolar solution of mannitol, and pre-infusion of an isotonic buffer solution followed by infusion of nanoparticles. These treatments resulted in an increase in the nanoparticle distribution volume of 51% and 123%, respectively. To degrade hyaluronan, a primary structural component of the brain ECM, a pre-infusion of hyaluronidase (20,000 U/mL) was followed after 30 min by infusion of nanoparticles. This treatment resulted in an increase in the nanoparticle distribution of 64%. Our results suggest that both dilation and enzymatic digestion can be incorporated into CED protocols to enhance nanoparticle penetration. |
doi_str_mv | 10.1016/j.brainres.2007.08.050 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2169304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0006899307019567</els_id><sourcerecordid>20413281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-83a839e7ec22690d93a34e1ff4414f929671aa8b8b0abf47f38e2c1cad0c926b3</originalsourceid><addsrcrecordid>eNqFkkFv1DAQhSMEotvCX6hygduGsZ2N7UsFaikgVeIAnK2JM-l6ydrBTqruv8fLbilw4WSN_L03o3lTFOcMKgasebOp2ojOR0oVB5AVqApW8KRYMCX5suE1PC0WANAsldbipDhNaZNLITQ8L06Y1FlVy0UxXrkBJxd8ib4rO7qN2B3q0JfTmspfbUq6nyJaGoZ5wFhucYruviS_Rm8plSN5yv8PMuf7OVFXjmHYbSmWHn0YMU7ODpReFM96HBK9PL5nxbfr918vPy5vPn_4dPnuZmlXajUtlUAlNEmynDcaOi1Q1MT6vq5Z3WuuG8kQVatawLavZS8UccssdmA1b1pxVlwcfMe53VJnyecJBzNGt8W4MwGd-fvHu7W5DXeGs0YLqLPB66NBDD9mSpPZurRfAXoKczIcaia4YhlsDqCNIaVI_e8mDMw-LLMxD2GZfVgGlMlhZeH5nyM-yo7pZODVEcBkcehjXrdLj5wWkkmuM_f2wFFe6J2jaJJ1lKPpXCQ7mS64_89y8Y-FHZx3uet32lHahDn6HJdhJnED5sv-tPaXBRKYXjVS_ASvhM9K</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20413281</pqid></control><display><type>article</type><title>Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Neeves, Keith B ; Sawyer, Andrew J ; Foley, Conor P ; Saltzman, W. Mark ; Olbricht, William L</creator><creatorcontrib>Neeves, Keith B ; Sawyer, Andrew J ; Foley, Conor P ; Saltzman, W. Mark ; Olbricht, William L</creatorcontrib><description>Abstract This study investigates methods of manipulating the brain extracellular matrix (ECM) to enhance the penetration of nanoparticle drug carriers in convection-enhanced delivery (CED). A probe was fabricated with two independent microfluidic channels to infuse, either simultaneously or sequentially, nanoparticles and ECM-modifying agents. Infusions were performed in the striatum of the normal rat brain. Monodisperse polystyrene particles with a diameter of 54 nm were used as a model nanoparticle system. Because the size of these particles is comparable to the effective pore size of the ECM, their transport may be significantly hindered compared with the transport of low molecular weight molecules. To enhance the transport of the infused nanoparticles, we attempted to increase the effective pore size of the ECM by two methods: dilating the extracellular space and degrading selected constituents of the ECM. Two methods of dilating the extracellular space were investigated: co-infusion of nanoparticles and a hyperosmolar solution of mannitol, and pre-infusion of an isotonic buffer solution followed by infusion of nanoparticles. These treatments resulted in an increase in the nanoparticle distribution volume of 51% and 123%, respectively. To degrade hyaluronan, a primary structural component of the brain ECM, a pre-infusion of hyaluronidase (20,000 U/mL) was followed after 30 min by infusion of nanoparticles. This treatment resulted in an increase in the nanoparticle distribution of 64%. Our results suggest that both dilation and enzymatic digestion can be incorporated into CED protocols to enhance nanoparticle penetration.</description><identifier>ISSN: 0006-8993</identifier><identifier>EISSN: 1872-6240</identifier><identifier>DOI: 10.1016/j.brainres.2007.08.050</identifier><identifier>PMID: 17920047</identifier><identifier>CODEN: BRREAP</identifier><language>eng</language><publisher>London: Elsevier B.V</publisher><subject>Animals ; Biochemistry and metabolism ; Biological and medical sciences ; Central nervous system ; Convection ; Convection-enhanced delivery ; Dilatation - methods ; Dilation ; Drug Delivery Systems - instrumentation ; Drug Delivery Systems - methods ; Extracellular Fluid - drug effects ; Extracellular Fluid - metabolism ; Extracellular Matrix - drug effects ; Extracellular Matrix - metabolism ; Fundamental and applied biological sciences. Psychology ; Hyaluronidase ; Hyaluronoglucosaminidase - administration & dosage ; Hyaluronoglucosaminidase - metabolism ; Male ; Mannitol ; Microelectrodes ; Microfluidic ; Molecular Weight ; Nanoparticle ; Nanoparticles - administration & dosage ; Nanoparticles - chemistry ; Neostriatum - drug effects ; Neostriatum - metabolism ; Neurology ; Osmolar Concentration ; Polymers - administration & dosage ; Polymers - pharmacokinetics ; Polystyrenes - administration & dosage ; Polystyrenes - pharmacokinetics ; Rats ; Rats, Sprague-Dawley ; Tissue Distribution ; Vertebrates: nervous system and sense organs</subject><ispartof>Brain research, 2007-11, Vol.1180, p.121-132</ispartof><rights>Elsevier B.V.</rights><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-83a839e7ec22690d93a34e1ff4414f929671aa8b8b0abf47f38e2c1cad0c926b3</citedby><cites>FETCH-LOGICAL-c585t-83a839e7ec22690d93a34e1ff4414f929671aa8b8b0abf47f38e2c1cad0c926b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006899307019567$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19371729$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17920047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Neeves, Keith B</creatorcontrib><creatorcontrib>Sawyer, Andrew J</creatorcontrib><creatorcontrib>Foley, Conor P</creatorcontrib><creatorcontrib>Saltzman, W. Mark</creatorcontrib><creatorcontrib>Olbricht, William L</creatorcontrib><title>Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles</title><title>Brain research</title><addtitle>Brain Res</addtitle><description>Abstract This study investigates methods of manipulating the brain extracellular matrix (ECM) to enhance the penetration of nanoparticle drug carriers in convection-enhanced delivery (CED). A probe was fabricated with two independent microfluidic channels to infuse, either simultaneously or sequentially, nanoparticles and ECM-modifying agents. Infusions were performed in the striatum of the normal rat brain. Monodisperse polystyrene particles with a diameter of 54 nm were used as a model nanoparticle system. Because the size of these particles is comparable to the effective pore size of the ECM, their transport may be significantly hindered compared with the transport of low molecular weight molecules. To enhance the transport of the infused nanoparticles, we attempted to increase the effective pore size of the ECM by two methods: dilating the extracellular space and degrading selected constituents of the ECM. Two methods of dilating the extracellular space were investigated: co-infusion of nanoparticles and a hyperosmolar solution of mannitol, and pre-infusion of an isotonic buffer solution followed by infusion of nanoparticles. These treatments resulted in an increase in the nanoparticle distribution volume of 51% and 123%, respectively. To degrade hyaluronan, a primary structural component of the brain ECM, a pre-infusion of hyaluronidase (20,000 U/mL) was followed after 30 min by infusion of nanoparticles. This treatment resulted in an increase in the nanoparticle distribution of 64%. Our results suggest that both dilation and enzymatic digestion can be incorporated into CED protocols to enhance nanoparticle penetration.</description><subject>Animals</subject><subject>Biochemistry and metabolism</subject><subject>Biological and medical sciences</subject><subject>Central nervous system</subject><subject>Convection</subject><subject>Convection-enhanced delivery</subject><subject>Dilatation - methods</subject><subject>Dilation</subject><subject>Drug Delivery Systems - instrumentation</subject><subject>Drug Delivery Systems - methods</subject><subject>Extracellular Fluid - drug effects</subject><subject>Extracellular Fluid - metabolism</subject><subject>Extracellular Matrix - drug effects</subject><subject>Extracellular Matrix - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hyaluronidase</subject><subject>Hyaluronoglucosaminidase - administration & dosage</subject><subject>Hyaluronoglucosaminidase - metabolism</subject><subject>Male</subject><subject>Mannitol</subject><subject>Microelectrodes</subject><subject>Microfluidic</subject><subject>Molecular Weight</subject><subject>Nanoparticle</subject><subject>Nanoparticles - administration & dosage</subject><subject>Nanoparticles - chemistry</subject><subject>Neostriatum - drug effects</subject><subject>Neostriatum - metabolism</subject><subject>Neurology</subject><subject>Osmolar Concentration</subject><subject>Polymers - administration & dosage</subject><subject>Polymers - pharmacokinetics</subject><subject>Polystyrenes - administration & dosage</subject><subject>Polystyrenes - pharmacokinetics</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Tissue Distribution</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0006-8993</issn><issn>1872-6240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkFv1DAQhSMEotvCX6hygduGsZ2N7UsFaikgVeIAnK2JM-l6ydrBTqruv8fLbilw4WSN_L03o3lTFOcMKgasebOp2ojOR0oVB5AVqApW8KRYMCX5suE1PC0WANAsldbipDhNaZNLITQ8L06Y1FlVy0UxXrkBJxd8ib4rO7qN2B3q0JfTmspfbUq6nyJaGoZ5wFhucYruviS_Rm8plSN5yv8PMuf7OVFXjmHYbSmWHn0YMU7ODpReFM96HBK9PL5nxbfr918vPy5vPn_4dPnuZmlXajUtlUAlNEmynDcaOi1Q1MT6vq5Z3WuuG8kQVatawLavZS8UccssdmA1b1pxVlwcfMe53VJnyecJBzNGt8W4MwGd-fvHu7W5DXeGs0YLqLPB66NBDD9mSpPZurRfAXoKczIcaia4YhlsDqCNIaVI_e8mDMw-LLMxD2GZfVgGlMlhZeH5nyM-yo7pZODVEcBkcehjXrdLj5wWkkmuM_f2wFFe6J2jaJJ1lKPpXCQ7mS64_89y8Y-FHZx3uet32lHahDn6HJdhJnED5sv-tPaXBRKYXjVS_ASvhM9K</recordid><startdate>20071114</startdate><enddate>20071114</enddate><creator>Neeves, Keith B</creator><creator>Sawyer, Andrew J</creator><creator>Foley, Conor P</creator><creator>Saltzman, W. Mark</creator><creator>Olbricht, William L</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20071114</creationdate><title>Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles</title><author>Neeves, Keith B ; Sawyer, Andrew J ; Foley, Conor P ; Saltzman, W. Mark ; Olbricht, William L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-83a839e7ec22690d93a34e1ff4414f929671aa8b8b0abf47f38e2c1cad0c926b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Biochemistry and metabolism</topic><topic>Biological and medical sciences</topic><topic>Central nervous system</topic><topic>Convection</topic><topic>Convection-enhanced delivery</topic><topic>Dilatation - methods</topic><topic>Dilation</topic><topic>Drug Delivery Systems - instrumentation</topic><topic>Drug Delivery Systems - methods</topic><topic>Extracellular Fluid - drug effects</topic><topic>Extracellular Fluid - metabolism</topic><topic>Extracellular Matrix - drug effects</topic><topic>Extracellular Matrix - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hyaluronidase</topic><topic>Hyaluronoglucosaminidase - administration & dosage</topic><topic>Hyaluronoglucosaminidase - metabolism</topic><topic>Male</topic><topic>Mannitol</topic><topic>Microelectrodes</topic><topic>Microfluidic</topic><topic>Molecular Weight</topic><topic>Nanoparticle</topic><topic>Nanoparticles - administration & dosage</topic><topic>Nanoparticles - chemistry</topic><topic>Neostriatum - drug effects</topic><topic>Neostriatum - metabolism</topic><topic>Neurology</topic><topic>Osmolar Concentration</topic><topic>Polymers - administration & dosage</topic><topic>Polymers - pharmacokinetics</topic><topic>Polystyrenes - administration & dosage</topic><topic>Polystyrenes - pharmacokinetics</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Tissue Distribution</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neeves, Keith B</creatorcontrib><creatorcontrib>Sawyer, Andrew J</creatorcontrib><creatorcontrib>Foley, Conor P</creatorcontrib><creatorcontrib>Saltzman, W. Mark</creatorcontrib><creatorcontrib>Olbricht, William L</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neeves, Keith B</au><au>Sawyer, Andrew J</au><au>Foley, Conor P</au><au>Saltzman, W. Mark</au><au>Olbricht, William L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles</atitle><jtitle>Brain research</jtitle><addtitle>Brain Res</addtitle><date>2007-11-14</date><risdate>2007</risdate><volume>1180</volume><spage>121</spage><epage>132</epage><pages>121-132</pages><issn>0006-8993</issn><eissn>1872-6240</eissn><coden>BRREAP</coden><abstract>Abstract This study investigates methods of manipulating the brain extracellular matrix (ECM) to enhance the penetration of nanoparticle drug carriers in convection-enhanced delivery (CED). A probe was fabricated with two independent microfluidic channels to infuse, either simultaneously or sequentially, nanoparticles and ECM-modifying agents. Infusions were performed in the striatum of the normal rat brain. Monodisperse polystyrene particles with a diameter of 54 nm were used as a model nanoparticle system. Because the size of these particles is comparable to the effective pore size of the ECM, their transport may be significantly hindered compared with the transport of low molecular weight molecules. To enhance the transport of the infused nanoparticles, we attempted to increase the effective pore size of the ECM by two methods: dilating the extracellular space and degrading selected constituents of the ECM. Two methods of dilating the extracellular space were investigated: co-infusion of nanoparticles and a hyperosmolar solution of mannitol, and pre-infusion of an isotonic buffer solution followed by infusion of nanoparticles. These treatments resulted in an increase in the nanoparticle distribution volume of 51% and 123%, respectively. To degrade hyaluronan, a primary structural component of the brain ECM, a pre-infusion of hyaluronidase (20,000 U/mL) was followed after 30 min by infusion of nanoparticles. This treatment resulted in an increase in the nanoparticle distribution of 64%. Our results suggest that both dilation and enzymatic digestion can be incorporated into CED protocols to enhance nanoparticle penetration.</abstract><cop>London</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><pmid>17920047</pmid><doi>10.1016/j.brainres.2007.08.050</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8993 |
ispartof | Brain research, 2007-11, Vol.1180, p.121-132 |
issn | 0006-8993 1872-6240 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2169304 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Biochemistry and metabolism Biological and medical sciences Central nervous system Convection Convection-enhanced delivery Dilatation - methods Dilation Drug Delivery Systems - instrumentation Drug Delivery Systems - methods Extracellular Fluid - drug effects Extracellular Fluid - metabolism Extracellular Matrix - drug effects Extracellular Matrix - metabolism Fundamental and applied biological sciences. Psychology Hyaluronidase Hyaluronoglucosaminidase - administration & dosage Hyaluronoglucosaminidase - metabolism Male Mannitol Microelectrodes Microfluidic Molecular Weight Nanoparticle Nanoparticles - administration & dosage Nanoparticles - chemistry Neostriatum - drug effects Neostriatum - metabolism Neurology Osmolar Concentration Polymers - administration & dosage Polymers - pharmacokinetics Polystyrenes - administration & dosage Polystyrenes - pharmacokinetics Rats Rats, Sprague-Dawley Tissue Distribution Vertebrates: nervous system and sense organs |
title | Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dilation%20and%20degradation%20of%20the%20brain%20extracellular%20matrix%20enhances%20penetration%20of%20infused%20polymer%20nanoparticles&rft.jtitle=Brain%20research&rft.au=Neeves,%20Keith%20B&rft.date=2007-11-14&rft.volume=1180&rft.spage=121&rft.epage=132&rft.pages=121-132&rft.issn=0006-8993&rft.eissn=1872-6240&rft.coden=BRREAP&rft_id=info:doi/10.1016/j.brainres.2007.08.050&rft_dat=%3Cproquest_pubme%3E20413281%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20413281&rft_id=info:pmid/17920047&rft_els_id=1_s2_0_S0006899307019567&rfr_iscdi=true |