Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles

Abstract This study investigates methods of manipulating the brain extracellular matrix (ECM) to enhance the penetration of nanoparticle drug carriers in convection-enhanced delivery (CED). A probe was fabricated with two independent microfluidic channels to infuse, either simultaneously or sequenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 2007-11, Vol.1180, p.121-132
Hauptverfasser: Neeves, Keith B, Sawyer, Andrew J, Foley, Conor P, Saltzman, W. Mark, Olbricht, William L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 132
container_issue
container_start_page 121
container_title Brain research
container_volume 1180
creator Neeves, Keith B
Sawyer, Andrew J
Foley, Conor P
Saltzman, W. Mark
Olbricht, William L
description Abstract This study investigates methods of manipulating the brain extracellular matrix (ECM) to enhance the penetration of nanoparticle drug carriers in convection-enhanced delivery (CED). A probe was fabricated with two independent microfluidic channels to infuse, either simultaneously or sequentially, nanoparticles and ECM-modifying agents. Infusions were performed in the striatum of the normal rat brain. Monodisperse polystyrene particles with a diameter of 54 nm were used as a model nanoparticle system. Because the size of these particles is comparable to the effective pore size of the ECM, their transport may be significantly hindered compared with the transport of low molecular weight molecules. To enhance the transport of the infused nanoparticles, we attempted to increase the effective pore size of the ECM by two methods: dilating the extracellular space and degrading selected constituents of the ECM. Two methods of dilating the extracellular space were investigated: co-infusion of nanoparticles and a hyperosmolar solution of mannitol, and pre-infusion of an isotonic buffer solution followed by infusion of nanoparticles. These treatments resulted in an increase in the nanoparticle distribution volume of 51% and 123%, respectively. To degrade hyaluronan, a primary structural component of the brain ECM, a pre-infusion of hyaluronidase (20,000 U/mL) was followed after 30 min by infusion of nanoparticles. This treatment resulted in an increase in the nanoparticle distribution of 64%. Our results suggest that both dilation and enzymatic digestion can be incorporated into CED protocols to enhance nanoparticle penetration.
doi_str_mv 10.1016/j.brainres.2007.08.050
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2169304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0006899307019567</els_id><sourcerecordid>20413281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-83a839e7ec22690d93a34e1ff4414f929671aa8b8b0abf47f38e2c1cad0c926b3</originalsourceid><addsrcrecordid>eNqFkkFv1DAQhSMEotvCX6hygduGsZ2N7UsFaikgVeIAnK2JM-l6ydrBTqruv8fLbilw4WSN_L03o3lTFOcMKgasebOp2ojOR0oVB5AVqApW8KRYMCX5suE1PC0WANAsldbipDhNaZNLITQ8L06Y1FlVy0UxXrkBJxd8ib4rO7qN2B3q0JfTmspfbUq6nyJaGoZ5wFhucYruviS_Rm8plSN5yv8PMuf7OVFXjmHYbSmWHn0YMU7ODpReFM96HBK9PL5nxbfr918vPy5vPn_4dPnuZmlXajUtlUAlNEmynDcaOi1Q1MT6vq5Z3WuuG8kQVatawLavZS8UccssdmA1b1pxVlwcfMe53VJnyecJBzNGt8W4MwGd-fvHu7W5DXeGs0YLqLPB66NBDD9mSpPZurRfAXoKczIcaia4YhlsDqCNIaVI_e8mDMw-LLMxD2GZfVgGlMlhZeH5nyM-yo7pZODVEcBkcehjXrdLj5wWkkmuM_f2wFFe6J2jaJJ1lKPpXCQ7mS64_89y8Y-FHZx3uet32lHahDn6HJdhJnED5sv-tPaXBRKYXjVS_ASvhM9K</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20413281</pqid></control><display><type>article</type><title>Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Neeves, Keith B ; Sawyer, Andrew J ; Foley, Conor P ; Saltzman, W. Mark ; Olbricht, William L</creator><creatorcontrib>Neeves, Keith B ; Sawyer, Andrew J ; Foley, Conor P ; Saltzman, W. Mark ; Olbricht, William L</creatorcontrib><description>Abstract This study investigates methods of manipulating the brain extracellular matrix (ECM) to enhance the penetration of nanoparticle drug carriers in convection-enhanced delivery (CED). A probe was fabricated with two independent microfluidic channels to infuse, either simultaneously or sequentially, nanoparticles and ECM-modifying agents. Infusions were performed in the striatum of the normal rat brain. Monodisperse polystyrene particles with a diameter of 54 nm were used as a model nanoparticle system. Because the size of these particles is comparable to the effective pore size of the ECM, their transport may be significantly hindered compared with the transport of low molecular weight molecules. To enhance the transport of the infused nanoparticles, we attempted to increase the effective pore size of the ECM by two methods: dilating the extracellular space and degrading selected constituents of the ECM. Two methods of dilating the extracellular space were investigated: co-infusion of nanoparticles and a hyperosmolar solution of mannitol, and pre-infusion of an isotonic buffer solution followed by infusion of nanoparticles. These treatments resulted in an increase in the nanoparticle distribution volume of 51% and 123%, respectively. To degrade hyaluronan, a primary structural component of the brain ECM, a pre-infusion of hyaluronidase (20,000 U/mL) was followed after 30 min by infusion of nanoparticles. This treatment resulted in an increase in the nanoparticle distribution of 64%. Our results suggest that both dilation and enzymatic digestion can be incorporated into CED protocols to enhance nanoparticle penetration.</description><identifier>ISSN: 0006-8993</identifier><identifier>EISSN: 1872-6240</identifier><identifier>DOI: 10.1016/j.brainres.2007.08.050</identifier><identifier>PMID: 17920047</identifier><identifier>CODEN: BRREAP</identifier><language>eng</language><publisher>London: Elsevier B.V</publisher><subject>Animals ; Biochemistry and metabolism ; Biological and medical sciences ; Central nervous system ; Convection ; Convection-enhanced delivery ; Dilatation - methods ; Dilation ; Drug Delivery Systems - instrumentation ; Drug Delivery Systems - methods ; Extracellular Fluid - drug effects ; Extracellular Fluid - metabolism ; Extracellular Matrix - drug effects ; Extracellular Matrix - metabolism ; Fundamental and applied biological sciences. Psychology ; Hyaluronidase ; Hyaluronoglucosaminidase - administration &amp; dosage ; Hyaluronoglucosaminidase - metabolism ; Male ; Mannitol ; Microelectrodes ; Microfluidic ; Molecular Weight ; Nanoparticle ; Nanoparticles - administration &amp; dosage ; Nanoparticles - chemistry ; Neostriatum - drug effects ; Neostriatum - metabolism ; Neurology ; Osmolar Concentration ; Polymers - administration &amp; dosage ; Polymers - pharmacokinetics ; Polystyrenes - administration &amp; dosage ; Polystyrenes - pharmacokinetics ; Rats ; Rats, Sprague-Dawley ; Tissue Distribution ; Vertebrates: nervous system and sense organs</subject><ispartof>Brain research, 2007-11, Vol.1180, p.121-132</ispartof><rights>Elsevier B.V.</rights><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-83a839e7ec22690d93a34e1ff4414f929671aa8b8b0abf47f38e2c1cad0c926b3</citedby><cites>FETCH-LOGICAL-c585t-83a839e7ec22690d93a34e1ff4414f929671aa8b8b0abf47f38e2c1cad0c926b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006899307019567$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19371729$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17920047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Neeves, Keith B</creatorcontrib><creatorcontrib>Sawyer, Andrew J</creatorcontrib><creatorcontrib>Foley, Conor P</creatorcontrib><creatorcontrib>Saltzman, W. Mark</creatorcontrib><creatorcontrib>Olbricht, William L</creatorcontrib><title>Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles</title><title>Brain research</title><addtitle>Brain Res</addtitle><description>Abstract This study investigates methods of manipulating the brain extracellular matrix (ECM) to enhance the penetration of nanoparticle drug carriers in convection-enhanced delivery (CED). A probe was fabricated with two independent microfluidic channels to infuse, either simultaneously or sequentially, nanoparticles and ECM-modifying agents. Infusions were performed in the striatum of the normal rat brain. Monodisperse polystyrene particles with a diameter of 54 nm were used as a model nanoparticle system. Because the size of these particles is comparable to the effective pore size of the ECM, their transport may be significantly hindered compared with the transport of low molecular weight molecules. To enhance the transport of the infused nanoparticles, we attempted to increase the effective pore size of the ECM by two methods: dilating the extracellular space and degrading selected constituents of the ECM. Two methods of dilating the extracellular space were investigated: co-infusion of nanoparticles and a hyperosmolar solution of mannitol, and pre-infusion of an isotonic buffer solution followed by infusion of nanoparticles. These treatments resulted in an increase in the nanoparticle distribution volume of 51% and 123%, respectively. To degrade hyaluronan, a primary structural component of the brain ECM, a pre-infusion of hyaluronidase (20,000 U/mL) was followed after 30 min by infusion of nanoparticles. This treatment resulted in an increase in the nanoparticle distribution of 64%. Our results suggest that both dilation and enzymatic digestion can be incorporated into CED protocols to enhance nanoparticle penetration.</description><subject>Animals</subject><subject>Biochemistry and metabolism</subject><subject>Biological and medical sciences</subject><subject>Central nervous system</subject><subject>Convection</subject><subject>Convection-enhanced delivery</subject><subject>Dilatation - methods</subject><subject>Dilation</subject><subject>Drug Delivery Systems - instrumentation</subject><subject>Drug Delivery Systems - methods</subject><subject>Extracellular Fluid - drug effects</subject><subject>Extracellular Fluid - metabolism</subject><subject>Extracellular Matrix - drug effects</subject><subject>Extracellular Matrix - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hyaluronidase</subject><subject>Hyaluronoglucosaminidase - administration &amp; dosage</subject><subject>Hyaluronoglucosaminidase - metabolism</subject><subject>Male</subject><subject>Mannitol</subject><subject>Microelectrodes</subject><subject>Microfluidic</subject><subject>Molecular Weight</subject><subject>Nanoparticle</subject><subject>Nanoparticles - administration &amp; dosage</subject><subject>Nanoparticles - chemistry</subject><subject>Neostriatum - drug effects</subject><subject>Neostriatum - metabolism</subject><subject>Neurology</subject><subject>Osmolar Concentration</subject><subject>Polymers - administration &amp; dosage</subject><subject>Polymers - pharmacokinetics</subject><subject>Polystyrenes - administration &amp; dosage</subject><subject>Polystyrenes - pharmacokinetics</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Tissue Distribution</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0006-8993</issn><issn>1872-6240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkFv1DAQhSMEotvCX6hygduGsZ2N7UsFaikgVeIAnK2JM-l6ydrBTqruv8fLbilw4WSN_L03o3lTFOcMKgasebOp2ojOR0oVB5AVqApW8KRYMCX5suE1PC0WANAsldbipDhNaZNLITQ8L06Y1FlVy0UxXrkBJxd8ib4rO7qN2B3q0JfTmspfbUq6nyJaGoZ5wFhucYruviS_Rm8plSN5yv8PMuf7OVFXjmHYbSmWHn0YMU7ODpReFM96HBK9PL5nxbfr918vPy5vPn_4dPnuZmlXajUtlUAlNEmynDcaOi1Q1MT6vq5Z3WuuG8kQVatawLavZS8UccssdmA1b1pxVlwcfMe53VJnyecJBzNGt8W4MwGd-fvHu7W5DXeGs0YLqLPB66NBDD9mSpPZurRfAXoKczIcaia4YhlsDqCNIaVI_e8mDMw-LLMxD2GZfVgGlMlhZeH5nyM-yo7pZODVEcBkcehjXrdLj5wWkkmuM_f2wFFe6J2jaJJ1lKPpXCQ7mS64_89y8Y-FHZx3uet32lHahDn6HJdhJnED5sv-tPaXBRKYXjVS_ASvhM9K</recordid><startdate>20071114</startdate><enddate>20071114</enddate><creator>Neeves, Keith B</creator><creator>Sawyer, Andrew J</creator><creator>Foley, Conor P</creator><creator>Saltzman, W. Mark</creator><creator>Olbricht, William L</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20071114</creationdate><title>Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles</title><author>Neeves, Keith B ; Sawyer, Andrew J ; Foley, Conor P ; Saltzman, W. Mark ; Olbricht, William L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-83a839e7ec22690d93a34e1ff4414f929671aa8b8b0abf47f38e2c1cad0c926b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Biochemistry and metabolism</topic><topic>Biological and medical sciences</topic><topic>Central nervous system</topic><topic>Convection</topic><topic>Convection-enhanced delivery</topic><topic>Dilatation - methods</topic><topic>Dilation</topic><topic>Drug Delivery Systems - instrumentation</topic><topic>Drug Delivery Systems - methods</topic><topic>Extracellular Fluid - drug effects</topic><topic>Extracellular Fluid - metabolism</topic><topic>Extracellular Matrix - drug effects</topic><topic>Extracellular Matrix - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hyaluronidase</topic><topic>Hyaluronoglucosaminidase - administration &amp; dosage</topic><topic>Hyaluronoglucosaminidase - metabolism</topic><topic>Male</topic><topic>Mannitol</topic><topic>Microelectrodes</topic><topic>Microfluidic</topic><topic>Molecular Weight</topic><topic>Nanoparticle</topic><topic>Nanoparticles - administration &amp; dosage</topic><topic>Nanoparticles - chemistry</topic><topic>Neostriatum - drug effects</topic><topic>Neostriatum - metabolism</topic><topic>Neurology</topic><topic>Osmolar Concentration</topic><topic>Polymers - administration &amp; dosage</topic><topic>Polymers - pharmacokinetics</topic><topic>Polystyrenes - administration &amp; dosage</topic><topic>Polystyrenes - pharmacokinetics</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Tissue Distribution</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neeves, Keith B</creatorcontrib><creatorcontrib>Sawyer, Andrew J</creatorcontrib><creatorcontrib>Foley, Conor P</creatorcontrib><creatorcontrib>Saltzman, W. Mark</creatorcontrib><creatorcontrib>Olbricht, William L</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neeves, Keith B</au><au>Sawyer, Andrew J</au><au>Foley, Conor P</au><au>Saltzman, W. Mark</au><au>Olbricht, William L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles</atitle><jtitle>Brain research</jtitle><addtitle>Brain Res</addtitle><date>2007-11-14</date><risdate>2007</risdate><volume>1180</volume><spage>121</spage><epage>132</epage><pages>121-132</pages><issn>0006-8993</issn><eissn>1872-6240</eissn><coden>BRREAP</coden><abstract>Abstract This study investigates methods of manipulating the brain extracellular matrix (ECM) to enhance the penetration of nanoparticle drug carriers in convection-enhanced delivery (CED). A probe was fabricated with two independent microfluidic channels to infuse, either simultaneously or sequentially, nanoparticles and ECM-modifying agents. Infusions were performed in the striatum of the normal rat brain. Monodisperse polystyrene particles with a diameter of 54 nm were used as a model nanoparticle system. Because the size of these particles is comparable to the effective pore size of the ECM, their transport may be significantly hindered compared with the transport of low molecular weight molecules. To enhance the transport of the infused nanoparticles, we attempted to increase the effective pore size of the ECM by two methods: dilating the extracellular space and degrading selected constituents of the ECM. Two methods of dilating the extracellular space were investigated: co-infusion of nanoparticles and a hyperosmolar solution of mannitol, and pre-infusion of an isotonic buffer solution followed by infusion of nanoparticles. These treatments resulted in an increase in the nanoparticle distribution volume of 51% and 123%, respectively. To degrade hyaluronan, a primary structural component of the brain ECM, a pre-infusion of hyaluronidase (20,000 U/mL) was followed after 30 min by infusion of nanoparticles. This treatment resulted in an increase in the nanoparticle distribution of 64%. Our results suggest that both dilation and enzymatic digestion can be incorporated into CED protocols to enhance nanoparticle penetration.</abstract><cop>London</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><pmid>17920047</pmid><doi>10.1016/j.brainres.2007.08.050</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-8993
ispartof Brain research, 2007-11, Vol.1180, p.121-132
issn 0006-8993
1872-6240
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2169304
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
Biochemistry and metabolism
Biological and medical sciences
Central nervous system
Convection
Convection-enhanced delivery
Dilatation - methods
Dilation
Drug Delivery Systems - instrumentation
Drug Delivery Systems - methods
Extracellular Fluid - drug effects
Extracellular Fluid - metabolism
Extracellular Matrix - drug effects
Extracellular Matrix - metabolism
Fundamental and applied biological sciences. Psychology
Hyaluronidase
Hyaluronoglucosaminidase - administration & dosage
Hyaluronoglucosaminidase - metabolism
Male
Mannitol
Microelectrodes
Microfluidic
Molecular Weight
Nanoparticle
Nanoparticles - administration & dosage
Nanoparticles - chemistry
Neostriatum - drug effects
Neostriatum - metabolism
Neurology
Osmolar Concentration
Polymers - administration & dosage
Polymers - pharmacokinetics
Polystyrenes - administration & dosage
Polystyrenes - pharmacokinetics
Rats
Rats, Sprague-Dawley
Tissue Distribution
Vertebrates: nervous system and sense organs
title Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dilation%20and%20degradation%20of%20the%20brain%20extracellular%20matrix%20enhances%20penetration%20of%20infused%20polymer%20nanoparticles&rft.jtitle=Brain%20research&rft.au=Neeves,%20Keith%20B&rft.date=2007-11-14&rft.volume=1180&rft.spage=121&rft.epage=132&rft.pages=121-132&rft.issn=0006-8993&rft.eissn=1872-6240&rft.coden=BRREAP&rft_id=info:doi/10.1016/j.brainres.2007.08.050&rft_dat=%3Cproquest_pubme%3E20413281%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20413281&rft_id=info:pmid/17920047&rft_els_id=1_s2_0_S0006899307019567&rfr_iscdi=true