Life-history traits drive the evolutionary rates of mammalian coding and noncoding genomic elements

A comprehensive phylogenetic framework is indispensable for investigating the evolution of genomic features in mammals as a whole, and particularly in humans. Using the ENCODE sequence data, we estimated mammalian neutral evolutionary rates and selective pressures acting on conserved coding and nonc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-12, Vol.104 (51), p.20443-20448
Hauptverfasser: Nikolaev, Sergey I, Montoya-Burgos, Juan I, Popadin, Konstantin, Parand, Leila, Margulies, Elliott H, Antonarakis, Stylianos E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20448
container_issue 51
container_start_page 20443
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Nikolaev, Sergey I
Montoya-Burgos, Juan I
Popadin, Konstantin
Parand, Leila
Margulies, Elliott H
Antonarakis, Stylianos E
description A comprehensive phylogenetic framework is indispensable for investigating the evolution of genomic features in mammals as a whole, and particularly in humans. Using the ENCODE sequence data, we estimated mammalian neutral evolutionary rates and selective pressures acting on conserved coding and noncoding elements. We show that neutral evolutionary rates can be explained by the generation time (GT) hypothesis. Accordingly, primates (especially humans), having longer GTs than other mammals, display slower rates of neutral evolution. The evolution of constrained elements, particularly of nonsynonymous sites, is in agreement with the expectations of the nearly neutral theory of molecular evolution. We show that rates of nonsynonymous substitutions (dN) depend on the population size of a species. The results are robust to the exclusion of hypermutable CpG prone sites. The average rate of evolution in conserved noncoding sequences (CNCs) is 1.7 times higher than in nonsynonymous sites. Despite this, CNCs evolve at similar or even lower rates than nonsynonymous sites in the majority of basal branches of the eutherian tree. This observation could be the result of an overall gradual or, alternatively, lineage-specific relaxation of CNCs. The latter hypothesis was supported by the finding that 3 of the 20 longest CNCs displayed significant relaxation of individual branches. This observation may explain why the evolution of CNCs fits the expectations of the nearly neutral theory less well than the evolution of nonsynonymous sites.
doi_str_mv 10.1073/pnas.0705658104
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2154450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25450911</jstor_id><sourcerecordid>25450911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-414a95c7101b0112cf81e93ae13e76c62b876f637fe1f9ee4600e55dd10905b63</originalsourceid><addsrcrecordid>eNqFks2P0zAQxSMEYsvCmRNgcUDikN2ZxI6Ty0poxZdUiQPs2XKTSesqsYvtVPDf46jRFrjsybLmN88z7znLXiJcIcjy-mB1uAIJohI1An-UrRAazCvewONsBVDIvOYFv8iehbAHgEbU8DS7wBqkLOtilbVr01O-MyE6_5tFr00MrPPmSCzuiNHRDVM0zupU9TpSYK5nox5HPRhtWes6Y7dM245ZZ5fblqwbTctooJFsDM-zJ70eAr1Yzsvs7tPHH7df8vW3z19vP6zztiog5hy5bkQrEXADiEXb10hNqQlLklViNrWs-qqUPWHfEPEKgITourQyiE1VXmY3J93DtBmpa9PbXg_q4M2YxldOG_VvxZqd2rqjKlBwLiAJvFsEvPs5UYhqNKGlYdCW3BRU1YCc7XwQLIBLLKoigW__A_du8ja5kBgs-RxCgq5PUOtdCJ76-5ER1ByzmmNW55hTx-u_Nz3zS64JYAswd57luBI4T8fLhLx_AFH9NAyRfsXEvjqx-_mf3MOFSK41iKn-5lTvtVN6601Qd9_nBQHqspHJsT-Cs8_c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201347382</pqid></control><display><type>article</type><title>Life-history traits drive the evolutionary rates of mammalian coding and noncoding genomic elements</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Nikolaev, Sergey I ; Montoya-Burgos, Juan I ; Popadin, Konstantin ; Parand, Leila ; Margulies, Elliott H ; Antonarakis, Stylianos E</creator><creatorcontrib>Nikolaev, Sergey I ; Montoya-Burgos, Juan I ; Popadin, Konstantin ; Parand, Leila ; Margulies, Elliott H ; Antonarakis, Stylianos E ; National Institutes of Health Intramural Sequencing Center Comparative Sequencing Program ; National Institutes of Health Intramural Sequencing Center Comparative Sequencing Program</creatorcontrib><description>A comprehensive phylogenetic framework is indispensable for investigating the evolution of genomic features in mammals as a whole, and particularly in humans. Using the ENCODE sequence data, we estimated mammalian neutral evolutionary rates and selective pressures acting on conserved coding and noncoding elements. We show that neutral evolutionary rates can be explained by the generation time (GT) hypothesis. Accordingly, primates (especially humans), having longer GTs than other mammals, display slower rates of neutral evolution. The evolution of constrained elements, particularly of nonsynonymous sites, is in agreement with the expectations of the nearly neutral theory of molecular evolution. We show that rates of nonsynonymous substitutions (dN) depend on the population size of a species. The results are robust to the exclusion of hypermutable CpG prone sites. The average rate of evolution in conserved noncoding sequences (CNCs) is 1.7 times higher than in nonsynonymous sites. Despite this, CNCs evolve at similar or even lower rates than nonsynonymous sites in the majority of basal branches of the eutherian tree. This observation could be the result of an overall gradual or, alternatively, lineage-specific relaxation of CNCs. The latter hypothesis was supported by the finding that 3 of the 20 longest CNCs displayed significant relaxation of individual branches. This observation may explain why the evolution of CNCs fits the expectations of the nearly neutral theory less well than the evolution of nonsynonymous sites.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0705658104</identifier><identifier>PMID: 18077382</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Chimpanzees ; Conserved Sequence ; Databases, Genetic ; Deoxyribonucleic acid ; DNA ; DNA, Intergenic - genetics ; Evolution ; Evolution, Molecular ; Evolutionary biology ; Genetic Code ; Genetic mutation ; Genome - genetics ; Genome, Human - genetics ; Genomes ; Genomics ; Humans ; Linear regression ; Mammals ; Phylogenetics ; Population size ; Primates ; Selection, Genetic ; Sequence Analysis, DNA</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-12, Vol.104 (51), p.20443-20448</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 18, 2007</rights><rights>2007 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-414a95c7101b0112cf81e93ae13e76c62b876f637fe1f9ee4600e55dd10905b63</citedby><cites>FETCH-LOGICAL-c620t-414a95c7101b0112cf81e93ae13e76c62b876f637fe1f9ee4600e55dd10905b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/51.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25450911$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25450911$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18077382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nikolaev, Sergey I</creatorcontrib><creatorcontrib>Montoya-Burgos, Juan I</creatorcontrib><creatorcontrib>Popadin, Konstantin</creatorcontrib><creatorcontrib>Parand, Leila</creatorcontrib><creatorcontrib>Margulies, Elliott H</creatorcontrib><creatorcontrib>Antonarakis, Stylianos E</creatorcontrib><creatorcontrib>National Institutes of Health Intramural Sequencing Center Comparative Sequencing Program</creatorcontrib><creatorcontrib>National Institutes of Health Intramural Sequencing Center Comparative Sequencing Program</creatorcontrib><title>Life-history traits drive the evolutionary rates of mammalian coding and noncoding genomic elements</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A comprehensive phylogenetic framework is indispensable for investigating the evolution of genomic features in mammals as a whole, and particularly in humans. Using the ENCODE sequence data, we estimated mammalian neutral evolutionary rates and selective pressures acting on conserved coding and noncoding elements. We show that neutral evolutionary rates can be explained by the generation time (GT) hypothesis. Accordingly, primates (especially humans), having longer GTs than other mammals, display slower rates of neutral evolution. The evolution of constrained elements, particularly of nonsynonymous sites, is in agreement with the expectations of the nearly neutral theory of molecular evolution. We show that rates of nonsynonymous substitutions (dN) depend on the population size of a species. The results are robust to the exclusion of hypermutable CpG prone sites. The average rate of evolution in conserved noncoding sequences (CNCs) is 1.7 times higher than in nonsynonymous sites. Despite this, CNCs evolve at similar or even lower rates than nonsynonymous sites in the majority of basal branches of the eutherian tree. This observation could be the result of an overall gradual or, alternatively, lineage-specific relaxation of CNCs. The latter hypothesis was supported by the finding that 3 of the 20 longest CNCs displayed significant relaxation of individual branches. This observation may explain why the evolution of CNCs fits the expectations of the nearly neutral theory less well than the evolution of nonsynonymous sites.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Chimpanzees</subject><subject>Conserved Sequence</subject><subject>Databases, Genetic</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Intergenic - genetics</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Evolutionary biology</subject><subject>Genetic Code</subject><subject>Genetic mutation</subject><subject>Genome - genetics</subject><subject>Genome, Human - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humans</subject><subject>Linear regression</subject><subject>Mammals</subject><subject>Phylogenetics</subject><subject>Population size</subject><subject>Primates</subject><subject>Selection, Genetic</subject><subject>Sequence Analysis, DNA</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks2P0zAQxSMEYsvCmRNgcUDikN2ZxI6Ty0poxZdUiQPs2XKTSesqsYvtVPDf46jRFrjsybLmN88z7znLXiJcIcjy-mB1uAIJohI1An-UrRAazCvewONsBVDIvOYFv8iehbAHgEbU8DS7wBqkLOtilbVr01O-MyE6_5tFr00MrPPmSCzuiNHRDVM0zupU9TpSYK5nox5HPRhtWes6Y7dM245ZZ5fblqwbTctooJFsDM-zJ70eAr1Yzsvs7tPHH7df8vW3z19vP6zztiog5hy5bkQrEXADiEXb10hNqQlLklViNrWs-qqUPWHfEPEKgITourQyiE1VXmY3J93DtBmpa9PbXg_q4M2YxldOG_VvxZqd2rqjKlBwLiAJvFsEvPs5UYhqNKGlYdCW3BRU1YCc7XwQLIBLLKoigW__A_du8ja5kBgs-RxCgq5PUOtdCJ76-5ER1ByzmmNW55hTx-u_Nz3zS64JYAswd57luBI4T8fLhLx_AFH9NAyRfsXEvjqx-_mf3MOFSK41iKn-5lTvtVN6601Qd9_nBQHqspHJsT-Cs8_c</recordid><startdate>20071218</startdate><enddate>20071218</enddate><creator>Nikolaev, Sergey I</creator><creator>Montoya-Burgos, Juan I</creator><creator>Popadin, Konstantin</creator><creator>Parand, Leila</creator><creator>Margulies, Elliott H</creator><creator>Antonarakis, Stylianos E</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20071218</creationdate><title>Life-history traits drive the evolutionary rates of mammalian coding and noncoding genomic elements</title><author>Nikolaev, Sergey I ; Montoya-Burgos, Juan I ; Popadin, Konstantin ; Parand, Leila ; Margulies, Elliott H ; Antonarakis, Stylianos E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-414a95c7101b0112cf81e93ae13e76c62b876f637fe1f9ee4600e55dd10905b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Chimpanzees</topic><topic>Conserved Sequence</topic><topic>Databases, Genetic</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Intergenic - genetics</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Evolutionary biology</topic><topic>Genetic Code</topic><topic>Genetic mutation</topic><topic>Genome - genetics</topic><topic>Genome, Human - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humans</topic><topic>Linear regression</topic><topic>Mammals</topic><topic>Phylogenetics</topic><topic>Population size</topic><topic>Primates</topic><topic>Selection, Genetic</topic><topic>Sequence Analysis, DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikolaev, Sergey I</creatorcontrib><creatorcontrib>Montoya-Burgos, Juan I</creatorcontrib><creatorcontrib>Popadin, Konstantin</creatorcontrib><creatorcontrib>Parand, Leila</creatorcontrib><creatorcontrib>Margulies, Elliott H</creatorcontrib><creatorcontrib>Antonarakis, Stylianos E</creatorcontrib><creatorcontrib>National Institutes of Health Intramural Sequencing Center Comparative Sequencing Program</creatorcontrib><creatorcontrib>National Institutes of Health Intramural Sequencing Center Comparative Sequencing Program</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikolaev, Sergey I</au><au>Montoya-Burgos, Juan I</au><au>Popadin, Konstantin</au><au>Parand, Leila</au><au>Margulies, Elliott H</au><au>Antonarakis, Stylianos E</au><aucorp>National Institutes of Health Intramural Sequencing Center Comparative Sequencing Program</aucorp><aucorp>National Institutes of Health Intramural Sequencing Center Comparative Sequencing Program</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Life-history traits drive the evolutionary rates of mammalian coding and noncoding genomic elements</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-12-18</date><risdate>2007</risdate><volume>104</volume><issue>51</issue><spage>20443</spage><epage>20448</epage><pages>20443-20448</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>A comprehensive phylogenetic framework is indispensable for investigating the evolution of genomic features in mammals as a whole, and particularly in humans. Using the ENCODE sequence data, we estimated mammalian neutral evolutionary rates and selective pressures acting on conserved coding and noncoding elements. We show that neutral evolutionary rates can be explained by the generation time (GT) hypothesis. Accordingly, primates (especially humans), having longer GTs than other mammals, display slower rates of neutral evolution. The evolution of constrained elements, particularly of nonsynonymous sites, is in agreement with the expectations of the nearly neutral theory of molecular evolution. We show that rates of nonsynonymous substitutions (dN) depend on the population size of a species. The results are robust to the exclusion of hypermutable CpG prone sites. The average rate of evolution in conserved noncoding sequences (CNCs) is 1.7 times higher than in nonsynonymous sites. Despite this, CNCs evolve at similar or even lower rates than nonsynonymous sites in the majority of basal branches of the eutherian tree. This observation could be the result of an overall gradual or, alternatively, lineage-specific relaxation of CNCs. The latter hypothesis was supported by the finding that 3 of the 20 longest CNCs displayed significant relaxation of individual branches. This observation may explain why the evolution of CNCs fits the expectations of the nearly neutral theory less well than the evolution of nonsynonymous sites.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18077382</pmid><doi>10.1073/pnas.0705658104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-12, Vol.104 (51), p.20443-20448
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2154450
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Sciences
Chimpanzees
Conserved Sequence
Databases, Genetic
Deoxyribonucleic acid
DNA
DNA, Intergenic - genetics
Evolution
Evolution, Molecular
Evolutionary biology
Genetic Code
Genetic mutation
Genome - genetics
Genome, Human - genetics
Genomes
Genomics
Humans
Linear regression
Mammals
Phylogenetics
Population size
Primates
Selection, Genetic
Sequence Analysis, DNA
title Life-history traits drive the evolutionary rates of mammalian coding and noncoding genomic elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A36%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Life-history%20traits%20drive%20the%20evolutionary%20rates%20of%20mammalian%20coding%20and%20noncoding%20genomic%20elements&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Nikolaev,%20Sergey%20I&rft.aucorp=National%20Institutes%20of%20Health%20Intramural%20Sequencing%20Center%20Comparative%20Sequencing%20Program&rft.date=2007-12-18&rft.volume=104&rft.issue=51&rft.spage=20443&rft.epage=20448&rft.pages=20443-20448&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0705658104&rft_dat=%3Cjstor_pubme%3E25450911%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201347382&rft_id=info:pmid/18077382&rft_jstor_id=25450911&rfr_iscdi=true