Deubiquitination of FANCD2 Is Required for DNA Crosslink Repair

Monoubiquitination of FANCD2 and PCNA promotes DNA repair. It causes chromatin accumulation of FANCD2 and facilitates PCNA's recruitment of translesion polymerases to stalled replication. USP1, a protease that removes monoubiquitin from FANCD2 and PCNA, was thought to reverse the DNA damage res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2007-12, Vol.28 (5), p.798-809
Hauptverfasser: Oestergaard, Vibe H., Langevin, Frederic, Kuiken, Hendrik J., Pace, Paul, Niedzwiedz, Wojciech, Simpson, Laura J., Ohzeki, Mioko, Takata, Minoru, Sale, Julian E., Patel, Ketan J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 809
container_issue 5
container_start_page 798
container_title Molecular cell
container_volume 28
creator Oestergaard, Vibe H.
Langevin, Frederic
Kuiken, Hendrik J.
Pace, Paul
Niedzwiedz, Wojciech
Simpson, Laura J.
Ohzeki, Mioko
Takata, Minoru
Sale, Julian E.
Patel, Ketan J.
description Monoubiquitination of FANCD2 and PCNA promotes DNA repair. It causes chromatin accumulation of FANCD2 and facilitates PCNA's recruitment of translesion polymerases to stalled replication. USP1, a protease that removes monoubiquitin from FANCD2 and PCNA, was thought to reverse the DNA damage response of these substrates. We disrupted USP1 in chicken cells to dissect its role in a stable genetic system. USP1 ablation increases FANCD2 and PCNA monoubiquitination but unexpectedly results in DNA crosslinker sensitivity. This defective DNA repair is associated with constitutively chromatin-bound, monoubiquitinated FANCD2. In contrast, persistent PCNA monoubiquitination has negligible impact on DNA repair or mutagenesis. USP1 was previously shown to autocleave after DNA damage. In DT40, USP1 autocleavage is not stimulated by DNA damage, and expressing a noncleavable mutant in the USP1 knockout strain partially rescues crosslinker sensitivity. We conclude that efficient DNA crosslink repair requires FANCD2 deubiquitination, whereas FANCD2 monoubiquitination is not dependent on USP1 autocleavage.
doi_str_mv 10.1016/j.molcel.2007.09.020
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2148256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276507006326</els_id><sourcerecordid>18082605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-22963f9a499824ac5e8182b0ce001b3576b0c1f6eaebf3ee7dfdcc2689d28bb33</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoTqf_QKR_oDVJ2zR5UUbndDAmiD6HNL3RzK6ZaTfw35ux4fTFp3vhcM6950PoiuCEYMJuFsnSNRqahGJcJFgkmOIjdEawKOKMsOx4v9OC5QN03nULjEmWc3GKBoRjThnOz9DdGNaV_Vzb3raqt66NnIkmo3k5ptG0i54hSB7qyDgfjeejqPSu6xrbfgRppay_QCdGNR1c7ucQvU7uX8rHePb0MC1Hs1jntOhjSgVLjVCZEJxmSufACacV1hCeqtK8YGEnhoGCyqQARW1qrSnjoqa8qtJ0iG53uat1tYRaQ9t71ciVt0vlv6RTVv5VWvsu39xGUpJxmrMQkO0C9LaBB_PjJVhugcqF3AGVW6ASCxmABtv177sH057g4TEI7TcWvOy0hVZDHbjpXtbO_n_hG6uNiX8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deubiquitination of FANCD2 Is Required for DNA Crosslink Repair</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Oestergaard, Vibe H. ; Langevin, Frederic ; Kuiken, Hendrik J. ; Pace, Paul ; Niedzwiedz, Wojciech ; Simpson, Laura J. ; Ohzeki, Mioko ; Takata, Minoru ; Sale, Julian E. ; Patel, Ketan J.</creator><creatorcontrib>Oestergaard, Vibe H. ; Langevin, Frederic ; Kuiken, Hendrik J. ; Pace, Paul ; Niedzwiedz, Wojciech ; Simpson, Laura J. ; Ohzeki, Mioko ; Takata, Minoru ; Sale, Julian E. ; Patel, Ketan J.</creatorcontrib><description>Monoubiquitination of FANCD2 and PCNA promotes DNA repair. It causes chromatin accumulation of FANCD2 and facilitates PCNA's recruitment of translesion polymerases to stalled replication. USP1, a protease that removes monoubiquitin from FANCD2 and PCNA, was thought to reverse the DNA damage response of these substrates. We disrupted USP1 in chicken cells to dissect its role in a stable genetic system. USP1 ablation increases FANCD2 and PCNA monoubiquitination but unexpectedly results in DNA crosslinker sensitivity. This defective DNA repair is associated with constitutively chromatin-bound, monoubiquitinated FANCD2. In contrast, persistent PCNA monoubiquitination has negligible impact on DNA repair or mutagenesis. USP1 was previously shown to autocleave after DNA damage. In DT40, USP1 autocleavage is not stimulated by DNA damage, and expressing a noncleavable mutant in the USP1 knockout strain partially rescues crosslinker sensitivity. We conclude that efficient DNA crosslink repair requires FANCD2 deubiquitination, whereas FANCD2 monoubiquitination is not dependent on USP1 autocleavage.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2007.09.020</identifier><identifier>PMID: 18082605</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Apoptosis ; Blotting, Western ; Cell Cycle ; Chickens ; Chromatin - metabolism ; Cisplatin - pharmacology ; Cross-Linking Reagents - pharmacology ; DNA ; DNA Damage - drug effects ; DNA Damage - physiology ; DNA Repair - drug effects ; DNA Repair - physiology ; Endopeptidases - genetics ; Endopeptidases - metabolism ; Fanconi Anemia - genetics ; Fanconi Anemia - metabolism ; Fanconi Anemia Complementation Group D2 Protein - genetics ; Fanconi Anemia Complementation Group D2 Protein - metabolism ; Gene Expression Regulation ; Gene Targeting ; Mitomycin - pharmacology ; Mutagenesis, Site-Directed ; Mutation ; Proliferating Cell Nuclear Antigen - genetics ; Proliferating Cell Nuclear Antigen - metabolism ; Protein Processing, Post-Translational ; PROTEINS ; Subcellular Fractions ; Ubiquitin - metabolism ; Ubiquitin-Specific Proteases ; Ubiquitination</subject><ispartof>Molecular cell, 2007-12, Vol.28 (5), p.798-809</ispartof><rights>2007 Elsevier Inc.</rights><rights>2007 ELL &amp; Excerpta Medica. 2007 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-22963f9a499824ac5e8182b0ce001b3576b0c1f6eaebf3ee7dfdcc2689d28bb33</citedby><cites>FETCH-LOGICAL-c527t-22963f9a499824ac5e8182b0ce001b3576b0c1f6eaebf3ee7dfdcc2689d28bb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276507006326$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18082605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oestergaard, Vibe H.</creatorcontrib><creatorcontrib>Langevin, Frederic</creatorcontrib><creatorcontrib>Kuiken, Hendrik J.</creatorcontrib><creatorcontrib>Pace, Paul</creatorcontrib><creatorcontrib>Niedzwiedz, Wojciech</creatorcontrib><creatorcontrib>Simpson, Laura J.</creatorcontrib><creatorcontrib>Ohzeki, Mioko</creatorcontrib><creatorcontrib>Takata, Minoru</creatorcontrib><creatorcontrib>Sale, Julian E.</creatorcontrib><creatorcontrib>Patel, Ketan J.</creatorcontrib><title>Deubiquitination of FANCD2 Is Required for DNA Crosslink Repair</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Monoubiquitination of FANCD2 and PCNA promotes DNA repair. It causes chromatin accumulation of FANCD2 and facilitates PCNA's recruitment of translesion polymerases to stalled replication. USP1, a protease that removes monoubiquitin from FANCD2 and PCNA, was thought to reverse the DNA damage response of these substrates. We disrupted USP1 in chicken cells to dissect its role in a stable genetic system. USP1 ablation increases FANCD2 and PCNA monoubiquitination but unexpectedly results in DNA crosslinker sensitivity. This defective DNA repair is associated with constitutively chromatin-bound, monoubiquitinated FANCD2. In contrast, persistent PCNA monoubiquitination has negligible impact on DNA repair or mutagenesis. USP1 was previously shown to autocleave after DNA damage. In DT40, USP1 autocleavage is not stimulated by DNA damage, and expressing a noncleavable mutant in the USP1 knockout strain partially rescues crosslinker sensitivity. We conclude that efficient DNA crosslink repair requires FANCD2 deubiquitination, whereas FANCD2 monoubiquitination is not dependent on USP1 autocleavage.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Blotting, Western</subject><subject>Cell Cycle</subject><subject>Chickens</subject><subject>Chromatin - metabolism</subject><subject>Cisplatin - pharmacology</subject><subject>Cross-Linking Reagents - pharmacology</subject><subject>DNA</subject><subject>DNA Damage - drug effects</subject><subject>DNA Damage - physiology</subject><subject>DNA Repair - drug effects</subject><subject>DNA Repair - physiology</subject><subject>Endopeptidases - genetics</subject><subject>Endopeptidases - metabolism</subject><subject>Fanconi Anemia - genetics</subject><subject>Fanconi Anemia - metabolism</subject><subject>Fanconi Anemia Complementation Group D2 Protein - genetics</subject><subject>Fanconi Anemia Complementation Group D2 Protein - metabolism</subject><subject>Gene Expression Regulation</subject><subject>Gene Targeting</subject><subject>Mitomycin - pharmacology</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Proliferating Cell Nuclear Antigen - genetics</subject><subject>Proliferating Cell Nuclear Antigen - metabolism</subject><subject>Protein Processing, Post-Translational</subject><subject>PROTEINS</subject><subject>Subcellular Fractions</subject><subject>Ubiquitin - metabolism</subject><subject>Ubiquitin-Specific Proteases</subject><subject>Ubiquitination</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kFFLwzAUhYMoTqf_QKR_oDVJ2zR5UUbndDAmiD6HNL3RzK6ZaTfw35ux4fTFp3vhcM6950PoiuCEYMJuFsnSNRqahGJcJFgkmOIjdEawKOKMsOx4v9OC5QN03nULjEmWc3GKBoRjThnOz9DdGNaV_Vzb3raqt66NnIkmo3k5ptG0i54hSB7qyDgfjeejqPSu6xrbfgRppay_QCdGNR1c7ucQvU7uX8rHePb0MC1Hs1jntOhjSgVLjVCZEJxmSufACacV1hCeqtK8YGEnhoGCyqQARW1qrSnjoqa8qtJ0iG53uat1tYRaQ9t71ciVt0vlv6RTVv5VWvsu39xGUpJxmrMQkO0C9LaBB_PjJVhugcqF3AGVW6ASCxmABtv177sH057g4TEI7TcWvOy0hVZDHbjpXtbO_n_hG6uNiX8</recordid><startdate>20071214</startdate><enddate>20071214</enddate><creator>Oestergaard, Vibe H.</creator><creator>Langevin, Frederic</creator><creator>Kuiken, Hendrik J.</creator><creator>Pace, Paul</creator><creator>Niedzwiedz, Wojciech</creator><creator>Simpson, Laura J.</creator><creator>Ohzeki, Mioko</creator><creator>Takata, Minoru</creator><creator>Sale, Julian E.</creator><creator>Patel, Ketan J.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20071214</creationdate><title>Deubiquitination of FANCD2 Is Required for DNA Crosslink Repair</title><author>Oestergaard, Vibe H. ; Langevin, Frederic ; Kuiken, Hendrik J. ; Pace, Paul ; Niedzwiedz, Wojciech ; Simpson, Laura J. ; Ohzeki, Mioko ; Takata, Minoru ; Sale, Julian E. ; Patel, Ketan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-22963f9a499824ac5e8182b0ce001b3576b0c1f6eaebf3ee7dfdcc2689d28bb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Blotting, Western</topic><topic>Cell Cycle</topic><topic>Chickens</topic><topic>Chromatin - metabolism</topic><topic>Cisplatin - pharmacology</topic><topic>Cross-Linking Reagents - pharmacology</topic><topic>DNA</topic><topic>DNA Damage - drug effects</topic><topic>DNA Damage - physiology</topic><topic>DNA Repair - drug effects</topic><topic>DNA Repair - physiology</topic><topic>Endopeptidases - genetics</topic><topic>Endopeptidases - metabolism</topic><topic>Fanconi Anemia - genetics</topic><topic>Fanconi Anemia - metabolism</topic><topic>Fanconi Anemia Complementation Group D2 Protein - genetics</topic><topic>Fanconi Anemia Complementation Group D2 Protein - metabolism</topic><topic>Gene Expression Regulation</topic><topic>Gene Targeting</topic><topic>Mitomycin - pharmacology</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Proliferating Cell Nuclear Antigen - genetics</topic><topic>Proliferating Cell Nuclear Antigen - metabolism</topic><topic>Protein Processing, Post-Translational</topic><topic>PROTEINS</topic><topic>Subcellular Fractions</topic><topic>Ubiquitin - metabolism</topic><topic>Ubiquitin-Specific Proteases</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oestergaard, Vibe H.</creatorcontrib><creatorcontrib>Langevin, Frederic</creatorcontrib><creatorcontrib>Kuiken, Hendrik J.</creatorcontrib><creatorcontrib>Pace, Paul</creatorcontrib><creatorcontrib>Niedzwiedz, Wojciech</creatorcontrib><creatorcontrib>Simpson, Laura J.</creatorcontrib><creatorcontrib>Ohzeki, Mioko</creatorcontrib><creatorcontrib>Takata, Minoru</creatorcontrib><creatorcontrib>Sale, Julian E.</creatorcontrib><creatorcontrib>Patel, Ketan J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oestergaard, Vibe H.</au><au>Langevin, Frederic</au><au>Kuiken, Hendrik J.</au><au>Pace, Paul</au><au>Niedzwiedz, Wojciech</au><au>Simpson, Laura J.</au><au>Ohzeki, Mioko</au><au>Takata, Minoru</au><au>Sale, Julian E.</au><au>Patel, Ketan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deubiquitination of FANCD2 Is Required for DNA Crosslink Repair</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2007-12-14</date><risdate>2007</risdate><volume>28</volume><issue>5</issue><spage>798</spage><epage>809</epage><pages>798-809</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Monoubiquitination of FANCD2 and PCNA promotes DNA repair. It causes chromatin accumulation of FANCD2 and facilitates PCNA's recruitment of translesion polymerases to stalled replication. USP1, a protease that removes monoubiquitin from FANCD2 and PCNA, was thought to reverse the DNA damage response of these substrates. We disrupted USP1 in chicken cells to dissect its role in a stable genetic system. USP1 ablation increases FANCD2 and PCNA monoubiquitination but unexpectedly results in DNA crosslinker sensitivity. This defective DNA repair is associated with constitutively chromatin-bound, monoubiquitinated FANCD2. In contrast, persistent PCNA monoubiquitination has negligible impact on DNA repair or mutagenesis. USP1 was previously shown to autocleave after DNA damage. In DT40, USP1 autocleavage is not stimulated by DNA damage, and expressing a noncleavable mutant in the USP1 knockout strain partially rescues crosslinker sensitivity. We conclude that efficient DNA crosslink repair requires FANCD2 deubiquitination, whereas FANCD2 monoubiquitination is not dependent on USP1 autocleavage.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18082605</pmid><doi>10.1016/j.molcel.2007.09.020</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2007-12, Vol.28 (5), p.798-809
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2148256
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Animals
Apoptosis
Blotting, Western
Cell Cycle
Chickens
Chromatin - metabolism
Cisplatin - pharmacology
Cross-Linking Reagents - pharmacology
DNA
DNA Damage - drug effects
DNA Damage - physiology
DNA Repair - drug effects
DNA Repair - physiology
Endopeptidases - genetics
Endopeptidases - metabolism
Fanconi Anemia - genetics
Fanconi Anemia - metabolism
Fanconi Anemia Complementation Group D2 Protein - genetics
Fanconi Anemia Complementation Group D2 Protein - metabolism
Gene Expression Regulation
Gene Targeting
Mitomycin - pharmacology
Mutagenesis, Site-Directed
Mutation
Proliferating Cell Nuclear Antigen - genetics
Proliferating Cell Nuclear Antigen - metabolism
Protein Processing, Post-Translational
PROTEINS
Subcellular Fractions
Ubiquitin - metabolism
Ubiquitin-Specific Proteases
Ubiquitination
title Deubiquitination of FANCD2 Is Required for DNA Crosslink Repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A28%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deubiquitination%20of%20FANCD2%20Is%20Required%20for%20DNA%20Crosslink%20Repair&rft.jtitle=Molecular%20cell&rft.au=Oestergaard,%20Vibe%20H.&rft.date=2007-12-14&rft.volume=28&rft.issue=5&rft.spage=798&rft.epage=809&rft.pages=798-809&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2007.09.020&rft_dat=%3Cpubmed_cross%3E18082605%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/18082605&rft_els_id=S1097276507006326&rfr_iscdi=true