Successful molecular dynamics simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach

Farnesyltransferase (FT) inhibitors can suppress tumor cell proliferation without substantially interfering with normal cell growth, thus holding promise for cancer treatment. A structure-based approach to the design of improved FT inhibitors relies on knowledge of the conformational flexibility of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2000-10, Vol.9 (10), p.1857-1865
Hauptverfasser: PANG, YUAN-PING, XU, KUN, YAZAL, JAMAL EL, PRENDERGAST, FRANKLYN G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1865
container_issue 10
container_start_page 1857
container_title Protein science
container_volume 9
creator PANG, YUAN-PING
XU, KUN
YAZAL, JAMAL EL
PRENDERGAST, FRANKLYN G.
description Farnesyltransferase (FT) inhibitors can suppress tumor cell proliferation without substantially interfering with normal cell growth, thus holding promise for cancer treatment. A structure-based approach to the design of improved FT inhibitors relies on knowledge of the conformational flexibility of the zinc-containing active site of FT. Although several X-ray structures of FT have been reported, detailed information regarding the active site conformational flexibility of the enzyme is still not available. Molecular dynamics (MD) simulations of FT can offer the requisite information, but have not been applied due to a lack of effective methods for simulating the four-ligand coordination of zinc in proteins. Here, we report in detail the problems that occurred in the conventional MD simulations of the zinc-bound FT and a solution to these problems by employing a simple method that uses cationic dummy atoms to impose orientational requirement for zinc ligands. A successful 1.0 ns (1.0 fs time step) MD simulation of zinc-bound FT suggests that nine conserved residues (Asn127α, Gln162α, Asn165α, Gln195α, His248β, Lys294β, Leu295β, Lys353β, and Ser357β) in the active site of mammalian FT are relatively mobile. Some of these residues might be involved in the ligand-induced active site conformational rearrangement upon binding and deserve attention in screening and design of improved FT inhibitors for cancer chemotherapy.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2144454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>S0961836800001474</cupid><sourcerecordid>72428131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-7f926c4e7cda95edf4dffea1d1bd992dbfdb99f64cc1801d44edaa7090146f6d3</originalsourceid><addsrcrecordid>eNpVUU1LxDAQLaLo-vEXJCcvUmjabNtcBBG_QPCggrcwTSa7kSZZk0ZYf71Zv9DTwMybN2_e2ypmlLW87Hn7vF3MKt7Ssm_afq_Yj_GlqipG62a32KOUVi2dd7MiPSQpMUadRmL9iDKNEIhaO7BGRhKNzY3JeEe8JtMSybtxshx8copoCA7jepwCuKgxQESSonGLT6D8XDOSqGTtmsDkLYHVKniQy8NiR8MY8ei7HhRPV5ePFzfl3f317cX5XSlr3k9lp3ndSoadVMDnqDRTWiNQRQfFea0GrQbOdcukpH1FFWOoALqKV9kF3armoDj74l2lwaKS6LLWUayCsRDWwoMR_yfOLMXCv4maMsbmLBOcfBME_5owTsKaKHEcwaFPUXQ1q3va0Aw8_nvp98SP0xlw-gWQYIdg1ALFi0_B5ffFwyaoTU45oSy9Y80H7Z6O1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72428131</pqid></control><display><type>article</type><title>Successful molecular dynamics simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>PANG, YUAN-PING ; XU, KUN ; YAZAL, JAMAL EL ; PRENDERGAST, FRANKLYN G.</creator><creatorcontrib>PANG, YUAN-PING ; XU, KUN ; YAZAL, JAMAL EL ; PRENDERGAST, FRANKLYN G.</creatorcontrib><description>Farnesyltransferase (FT) inhibitors can suppress tumor cell proliferation without substantially interfering with normal cell growth, thus holding promise for cancer treatment. A structure-based approach to the design of improved FT inhibitors relies on knowledge of the conformational flexibility of the zinc-containing active site of FT. Although several X-ray structures of FT have been reported, detailed information regarding the active site conformational flexibility of the enzyme is still not available. Molecular dynamics (MD) simulations of FT can offer the requisite information, but have not been applied due to a lack of effective methods for simulating the four-ligand coordination of zinc in proteins. Here, we report in detail the problems that occurred in the conventional MD simulations of the zinc-bound FT and a solution to these problems by employing a simple method that uses cationic dummy atoms to impose orientational requirement for zinc ligands. A successful 1.0 ns (1.0 fs time step) MD simulation of zinc-bound FT suggests that nine conserved residues (Asn127α, Gln162α, Asn165α, Gln195α, His248β, Lys294β, Leu295β, Lys353β, and Ser357β) in the active site of mammalian FT are relatively mobile. Some of these residues might be involved in the ligand-induced active site conformational rearrangement upon binding and deserve attention in screening and design of improved FT inhibitors for cancer chemotherapy.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>PMID: 11106157</identifier><language>eng</language><publisher>United States: Cambridge University Press</publisher><subject>Alkyl and Aryl Transferases - antagonists &amp; inhibitors ; Alkyl and Aryl Transferases - chemistry ; Alkyl and Aryl Transferases - metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Computer Simulation ; Conserved Sequence ; Crystallography, X-Ray ; Drug Design ; Enzyme Inhibitors - chemistry ; Farnesyltranstransferase ; Models, Molecular ; Protein Conformation ; Rats ; Zinc - chemistry ; Zinc - metabolism</subject><ispartof>Protein science, 2000-10, Vol.9 (10), p.1857-1865</ispartof><rights>2000 The Protein Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2144454/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2144454/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11106157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>PANG, YUAN-PING</creatorcontrib><creatorcontrib>XU, KUN</creatorcontrib><creatorcontrib>YAZAL, JAMAL EL</creatorcontrib><creatorcontrib>PRENDERGAST, FRANKLYN G.</creatorcontrib><title>Successful molecular dynamics simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Farnesyltransferase (FT) inhibitors can suppress tumor cell proliferation without substantially interfering with normal cell growth, thus holding promise for cancer treatment. A structure-based approach to the design of improved FT inhibitors relies on knowledge of the conformational flexibility of the zinc-containing active site of FT. Although several X-ray structures of FT have been reported, detailed information regarding the active site conformational flexibility of the enzyme is still not available. Molecular dynamics (MD) simulations of FT can offer the requisite information, but have not been applied due to a lack of effective methods for simulating the four-ligand coordination of zinc in proteins. Here, we report in detail the problems that occurred in the conventional MD simulations of the zinc-bound FT and a solution to these problems by employing a simple method that uses cationic dummy atoms to impose orientational requirement for zinc ligands. A successful 1.0 ns (1.0 fs time step) MD simulation of zinc-bound FT suggests that nine conserved residues (Asn127α, Gln162α, Asn165α, Gln195α, His248β, Lys294β, Leu295β, Lys353β, and Ser357β) in the active site of mammalian FT are relatively mobile. Some of these residues might be involved in the ligand-induced active site conformational rearrangement upon binding and deserve attention in screening and design of improved FT inhibitors for cancer chemotherapy.</description><subject>Alkyl and Aryl Transferases - antagonists &amp; inhibitors</subject><subject>Alkyl and Aryl Transferases - chemistry</subject><subject>Alkyl and Aryl Transferases - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Computer Simulation</subject><subject>Conserved Sequence</subject><subject>Crystallography, X-Ray</subject><subject>Drug Design</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Farnesyltranstransferase</subject><subject>Models, Molecular</subject><subject>Protein Conformation</subject><subject>Rats</subject><subject>Zinc - chemistry</subject><subject>Zinc - metabolism</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1LxDAQLaLo-vEXJCcvUmjabNtcBBG_QPCggrcwTSa7kSZZk0ZYf71Zv9DTwMybN2_e2ypmlLW87Hn7vF3MKt7Ssm_afq_Yj_GlqipG62a32KOUVi2dd7MiPSQpMUadRmL9iDKNEIhaO7BGRhKNzY3JeEe8JtMSybtxshx8copoCA7jepwCuKgxQESSonGLT6D8XDOSqGTtmsDkLYHVKniQy8NiR8MY8ei7HhRPV5ePFzfl3f317cX5XSlr3k9lp3ndSoadVMDnqDRTWiNQRQfFea0GrQbOdcukpH1FFWOoALqKV9kF3armoDj74l2lwaKS6LLWUayCsRDWwoMR_yfOLMXCv4maMsbmLBOcfBME_5owTsKaKHEcwaFPUXQ1q3va0Aw8_nvp98SP0xlw-gWQYIdg1ALFi0_B5ffFwyaoTU45oSy9Y80H7Z6O1w</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>PANG, YUAN-PING</creator><creator>XU, KUN</creator><creator>YAZAL, JAMAL EL</creator><creator>PRENDERGAST, FRANKLYN G.</creator><general>Cambridge University Press</general><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20001001</creationdate><title>Successful molecular dynamics simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach</title><author>PANG, YUAN-PING ; XU, KUN ; YAZAL, JAMAL EL ; PRENDERGAST, FRANKLYN G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-7f926c4e7cda95edf4dffea1d1bd992dbfdb99f64cc1801d44edaa7090146f6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Alkyl and Aryl Transferases - antagonists &amp; inhibitors</topic><topic>Alkyl and Aryl Transferases - chemistry</topic><topic>Alkyl and Aryl Transferases - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Computer Simulation</topic><topic>Conserved Sequence</topic><topic>Crystallography, X-Ray</topic><topic>Drug Design</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Farnesyltranstransferase</topic><topic>Models, Molecular</topic><topic>Protein Conformation</topic><topic>Rats</topic><topic>Zinc - chemistry</topic><topic>Zinc - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PANG, YUAN-PING</creatorcontrib><creatorcontrib>XU, KUN</creatorcontrib><creatorcontrib>YAZAL, JAMAL EL</creatorcontrib><creatorcontrib>PRENDERGAST, FRANKLYN G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PANG, YUAN-PING</au><au>XU, KUN</au><au>YAZAL, JAMAL EL</au><au>PRENDERGAST, FRANKLYN G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Successful molecular dynamics simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2000-10-01</date><risdate>2000</risdate><volume>9</volume><issue>10</issue><spage>1857</spage><epage>1865</epage><pages>1857-1865</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>Farnesyltransferase (FT) inhibitors can suppress tumor cell proliferation without substantially interfering with normal cell growth, thus holding promise for cancer treatment. A structure-based approach to the design of improved FT inhibitors relies on knowledge of the conformational flexibility of the zinc-containing active site of FT. Although several X-ray structures of FT have been reported, detailed information regarding the active site conformational flexibility of the enzyme is still not available. Molecular dynamics (MD) simulations of FT can offer the requisite information, but have not been applied due to a lack of effective methods for simulating the four-ligand coordination of zinc in proteins. Here, we report in detail the problems that occurred in the conventional MD simulations of the zinc-bound FT and a solution to these problems by employing a simple method that uses cationic dummy atoms to impose orientational requirement for zinc ligands. A successful 1.0 ns (1.0 fs time step) MD simulation of zinc-bound FT suggests that nine conserved residues (Asn127α, Gln162α, Asn165α, Gln195α, His248β, Lys294β, Leu295β, Lys353β, and Ser357β) in the active site of mammalian FT are relatively mobile. Some of these residues might be involved in the ligand-induced active site conformational rearrangement upon binding and deserve attention in screening and design of improved FT inhibitors for cancer chemotherapy.</abstract><cop>United States</cop><pub>Cambridge University Press</pub><pmid>11106157</pmid><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2000-10, Vol.9 (10), p.1857-1865
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2144454
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley Online Library All Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Alkyl and Aryl Transferases - antagonists & inhibitors
Alkyl and Aryl Transferases - chemistry
Alkyl and Aryl Transferases - metabolism
Amino Acid Sequence
Animals
Binding Sites
Computer Simulation
Conserved Sequence
Crystallography, X-Ray
Drug Design
Enzyme Inhibitors - chemistry
Farnesyltranstransferase
Models, Molecular
Protein Conformation
Rats
Zinc - chemistry
Zinc - metabolism
title Successful molecular dynamics simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A13%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Successful%20molecular%20dynamics%20simulation%20of%20the%20zinc-bound%20farnesyltransferase%20using%20the%20cationic%20dummy%20atom%20approach&rft.jtitle=Protein%20science&rft.au=PANG,%20YUAN-PING&rft.date=2000-10-01&rft.volume=9&rft.issue=10&rft.spage=1857&rft.epage=1865&rft.pages=1857-1865&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E72428131%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72428131&rft_id=info:pmid/11106157&rft_cupid=S0961836800001474&rfr_iscdi=true