Successful molecular dynamics simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach
Farnesyltransferase (FT) inhibitors can suppress tumor cell proliferation without substantially interfering with normal cell growth, thus holding promise for cancer treatment. A structure-based approach to the design of improved FT inhibitors relies on knowledge of the conformational flexibility of...
Gespeichert in:
Veröffentlicht in: | Protein science 2000-10, Vol.9 (10), p.1857-1865 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1865 |
---|---|
container_issue | 10 |
container_start_page | 1857 |
container_title | Protein science |
container_volume | 9 |
creator | PANG, YUAN-PING XU, KUN YAZAL, JAMAL EL PRENDERGAST, FRANKLYN G. |
description | Farnesyltransferase (FT) inhibitors can suppress
tumor cell proliferation without substantially interfering
with normal cell growth, thus holding promise for cancer
treatment. A structure-based approach to the design of
improved FT inhibitors relies on knowledge of the conformational
flexibility of the zinc-containing active site of FT. Although
several X-ray structures of FT have been reported, detailed
information regarding the active site conformational flexibility
of the enzyme is still not available. Molecular dynamics
(MD) simulations of FT can offer the requisite information,
but have not been applied due to a lack of effective methods
for simulating the four-ligand coordination of zinc in
proteins. Here, we report in detail the problems that occurred
in the conventional MD simulations of the zinc-bound FT
and a solution to these problems by employing a simple
method that uses cationic dummy atoms to impose orientational
requirement for zinc ligands. A successful 1.0 ns (1.0
fs time step) MD simulation of zinc-bound FT suggests that
nine conserved residues (Asn127α, Gln162α, Asn165α,
Gln195α, His248β, Lys294β, Leu295β, Lys353β,
and Ser357β) in the active site of mammalian FT are
relatively mobile. Some of these residues might be involved
in the ligand-induced active site conformational rearrangement
upon binding and deserve attention in screening and design
of improved FT inhibitors for cancer chemotherapy. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2144454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>S0961836800001474</cupid><sourcerecordid>72428131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-7f926c4e7cda95edf4dffea1d1bd992dbfdb99f64cc1801d44edaa7090146f6d3</originalsourceid><addsrcrecordid>eNpVUU1LxDAQLaLo-vEXJCcvUmjabNtcBBG_QPCggrcwTSa7kSZZk0ZYf71Zv9DTwMybN2_e2ypmlLW87Hn7vF3MKt7Ssm_afq_Yj_GlqipG62a32KOUVi2dd7MiPSQpMUadRmL9iDKNEIhaO7BGRhKNzY3JeEe8JtMSybtxshx8copoCA7jepwCuKgxQESSonGLT6D8XDOSqGTtmsDkLYHVKniQy8NiR8MY8ei7HhRPV5ePFzfl3f317cX5XSlr3k9lp3ndSoadVMDnqDRTWiNQRQfFea0GrQbOdcukpH1FFWOoALqKV9kF3armoDj74l2lwaKS6LLWUayCsRDWwoMR_yfOLMXCv4maMsbmLBOcfBME_5owTsKaKHEcwaFPUXQ1q3va0Aw8_nvp98SP0xlw-gWQYIdg1ALFi0_B5ffFwyaoTU45oSy9Y80H7Z6O1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72428131</pqid></control><display><type>article</type><title>Successful molecular dynamics simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>PANG, YUAN-PING ; XU, KUN ; YAZAL, JAMAL EL ; PRENDERGAST, FRANKLYN G.</creator><creatorcontrib>PANG, YUAN-PING ; XU, KUN ; YAZAL, JAMAL EL ; PRENDERGAST, FRANKLYN G.</creatorcontrib><description>Farnesyltransferase (FT) inhibitors can suppress
tumor cell proliferation without substantially interfering
with normal cell growth, thus holding promise for cancer
treatment. A structure-based approach to the design of
improved FT inhibitors relies on knowledge of the conformational
flexibility of the zinc-containing active site of FT. Although
several X-ray structures of FT have been reported, detailed
information regarding the active site conformational flexibility
of the enzyme is still not available. Molecular dynamics
(MD) simulations of FT can offer the requisite information,
but have not been applied due to a lack of effective methods
for simulating the four-ligand coordination of zinc in
proteins. Here, we report in detail the problems that occurred
in the conventional MD simulations of the zinc-bound FT
and a solution to these problems by employing a simple
method that uses cationic dummy atoms to impose orientational
requirement for zinc ligands. A successful 1.0 ns (1.0
fs time step) MD simulation of zinc-bound FT suggests that
nine conserved residues (Asn127α, Gln162α, Asn165α,
Gln195α, His248β, Lys294β, Leu295β, Lys353β,
and Ser357β) in the active site of mammalian FT are
relatively mobile. Some of these residues might be involved
in the ligand-induced active site conformational rearrangement
upon binding and deserve attention in screening and design
of improved FT inhibitors for cancer chemotherapy.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>PMID: 11106157</identifier><language>eng</language><publisher>United States: Cambridge University Press</publisher><subject>Alkyl and Aryl Transferases - antagonists & inhibitors ; Alkyl and Aryl Transferases - chemistry ; Alkyl and Aryl Transferases - metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Computer Simulation ; Conserved Sequence ; Crystallography, X-Ray ; Drug Design ; Enzyme Inhibitors - chemistry ; Farnesyltranstransferase ; Models, Molecular ; Protein Conformation ; Rats ; Zinc - chemistry ; Zinc - metabolism</subject><ispartof>Protein science, 2000-10, Vol.9 (10), p.1857-1865</ispartof><rights>2000 The Protein Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2144454/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2144454/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11106157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>PANG, YUAN-PING</creatorcontrib><creatorcontrib>XU, KUN</creatorcontrib><creatorcontrib>YAZAL, JAMAL EL</creatorcontrib><creatorcontrib>PRENDERGAST, FRANKLYN G.</creatorcontrib><title>Successful molecular dynamics simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Farnesyltransferase (FT) inhibitors can suppress
tumor cell proliferation without substantially interfering
with normal cell growth, thus holding promise for cancer
treatment. A structure-based approach to the design of
improved FT inhibitors relies on knowledge of the conformational
flexibility of the zinc-containing active site of FT. Although
several X-ray structures of FT have been reported, detailed
information regarding the active site conformational flexibility
of the enzyme is still not available. Molecular dynamics
(MD) simulations of FT can offer the requisite information,
but have not been applied due to a lack of effective methods
for simulating the four-ligand coordination of zinc in
proteins. Here, we report in detail the problems that occurred
in the conventional MD simulations of the zinc-bound FT
and a solution to these problems by employing a simple
method that uses cationic dummy atoms to impose orientational
requirement for zinc ligands. A successful 1.0 ns (1.0
fs time step) MD simulation of zinc-bound FT suggests that
nine conserved residues (Asn127α, Gln162α, Asn165α,
Gln195α, His248β, Lys294β, Leu295β, Lys353β,
and Ser357β) in the active site of mammalian FT are
relatively mobile. Some of these residues might be involved
in the ligand-induced active site conformational rearrangement
upon binding and deserve attention in screening and design
of improved FT inhibitors for cancer chemotherapy.</description><subject>Alkyl and Aryl Transferases - antagonists & inhibitors</subject><subject>Alkyl and Aryl Transferases - chemistry</subject><subject>Alkyl and Aryl Transferases - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Computer Simulation</subject><subject>Conserved Sequence</subject><subject>Crystallography, X-Ray</subject><subject>Drug Design</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Farnesyltranstransferase</subject><subject>Models, Molecular</subject><subject>Protein Conformation</subject><subject>Rats</subject><subject>Zinc - chemistry</subject><subject>Zinc - metabolism</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1LxDAQLaLo-vEXJCcvUmjabNtcBBG_QPCggrcwTSa7kSZZk0ZYf71Zv9DTwMybN2_e2ypmlLW87Hn7vF3MKt7Ssm_afq_Yj_GlqipG62a32KOUVi2dd7MiPSQpMUadRmL9iDKNEIhaO7BGRhKNzY3JeEe8JtMSybtxshx8copoCA7jepwCuKgxQESSonGLT6D8XDOSqGTtmsDkLYHVKniQy8NiR8MY8ei7HhRPV5ePFzfl3f317cX5XSlr3k9lp3ndSoadVMDnqDRTWiNQRQfFea0GrQbOdcukpH1FFWOoALqKV9kF3armoDj74l2lwaKS6LLWUayCsRDWwoMR_yfOLMXCv4maMsbmLBOcfBME_5owTsKaKHEcwaFPUXQ1q3va0Aw8_nvp98SP0xlw-gWQYIdg1ALFi0_B5ffFwyaoTU45oSy9Y80H7Z6O1w</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>PANG, YUAN-PING</creator><creator>XU, KUN</creator><creator>YAZAL, JAMAL EL</creator><creator>PRENDERGAST, FRANKLYN G.</creator><general>Cambridge University Press</general><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20001001</creationdate><title>Successful molecular dynamics simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach</title><author>PANG, YUAN-PING ; XU, KUN ; YAZAL, JAMAL EL ; PRENDERGAST, FRANKLYN G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-7f926c4e7cda95edf4dffea1d1bd992dbfdb99f64cc1801d44edaa7090146f6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Alkyl and Aryl Transferases - antagonists & inhibitors</topic><topic>Alkyl and Aryl Transferases - chemistry</topic><topic>Alkyl and Aryl Transferases - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Computer Simulation</topic><topic>Conserved Sequence</topic><topic>Crystallography, X-Ray</topic><topic>Drug Design</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Farnesyltranstransferase</topic><topic>Models, Molecular</topic><topic>Protein Conformation</topic><topic>Rats</topic><topic>Zinc - chemistry</topic><topic>Zinc - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PANG, YUAN-PING</creatorcontrib><creatorcontrib>XU, KUN</creatorcontrib><creatorcontrib>YAZAL, JAMAL EL</creatorcontrib><creatorcontrib>PRENDERGAST, FRANKLYN G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PANG, YUAN-PING</au><au>XU, KUN</au><au>YAZAL, JAMAL EL</au><au>PRENDERGAST, FRANKLYN G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Successful molecular dynamics simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2000-10-01</date><risdate>2000</risdate><volume>9</volume><issue>10</issue><spage>1857</spage><epage>1865</epage><pages>1857-1865</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>Farnesyltransferase (FT) inhibitors can suppress
tumor cell proliferation without substantially interfering
with normal cell growth, thus holding promise for cancer
treatment. A structure-based approach to the design of
improved FT inhibitors relies on knowledge of the conformational
flexibility of the zinc-containing active site of FT. Although
several X-ray structures of FT have been reported, detailed
information regarding the active site conformational flexibility
of the enzyme is still not available. Molecular dynamics
(MD) simulations of FT can offer the requisite information,
but have not been applied due to a lack of effective methods
for simulating the four-ligand coordination of zinc in
proteins. Here, we report in detail the problems that occurred
in the conventional MD simulations of the zinc-bound FT
and a solution to these problems by employing a simple
method that uses cationic dummy atoms to impose orientational
requirement for zinc ligands. A successful 1.0 ns (1.0
fs time step) MD simulation of zinc-bound FT suggests that
nine conserved residues (Asn127α, Gln162α, Asn165α,
Gln195α, His248β, Lys294β, Leu295β, Lys353β,
and Ser357β) in the active site of mammalian FT are
relatively mobile. Some of these residues might be involved
in the ligand-induced active site conformational rearrangement
upon binding and deserve attention in screening and design
of improved FT inhibitors for cancer chemotherapy.</abstract><cop>United States</cop><pub>Cambridge University Press</pub><pmid>11106157</pmid><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-8368 |
ispartof | Protein science, 2000-10, Vol.9 (10), p.1857-1865 |
issn | 0961-8368 1469-896X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2144454 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley Online Library All Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Alkyl and Aryl Transferases - antagonists & inhibitors Alkyl and Aryl Transferases - chemistry Alkyl and Aryl Transferases - metabolism Amino Acid Sequence Animals Binding Sites Computer Simulation Conserved Sequence Crystallography, X-Ray Drug Design Enzyme Inhibitors - chemistry Farnesyltranstransferase Models, Molecular Protein Conformation Rats Zinc - chemistry Zinc - metabolism |
title | Successful molecular dynamics simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A13%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Successful%20molecular%20dynamics%20simulation%20of%20the%20zinc-bound%20farnesyltransferase%20using%20the%20cationic%20dummy%20atom%20approach&rft.jtitle=Protein%20science&rft.au=PANG,%20YUAN-PING&rft.date=2000-10-01&rft.volume=9&rft.issue=10&rft.spage=1857&rft.epage=1865&rft.pages=1857-1865&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E72428131%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72428131&rft_id=info:pmid/11106157&rft_cupid=S0961836800001474&rfr_iscdi=true |