Amino acid substitutions at the subunit interface of dimeric Escherichia coli alkaline phosphatase cause reduced structural stability

The consequences of amino acid substitutions at the dimer interface for the strength of the interactions between the monomers and for the catalytic function of the dimeric enzyme alkaline phosphatase from Escherichia coli have been investigated. The altered enzymes R10A, R10K, R24A, R24K, T59A, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 1999-05, Vol.8 (5), p.1152-1159
Hauptverfasser: MARTIN, DONNA CAROLAN, PASTRA-LANDIS, S.C., KANTROWITZ, EVAN R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1159
container_issue 5
container_start_page 1152
container_title Protein science
container_volume 8
creator MARTIN, DONNA CAROLAN
PASTRA-LANDIS, S.C.
KANTROWITZ, EVAN R.
description The consequences of amino acid substitutions at the dimer interface for the strength of the interactions between the monomers and for the catalytic function of the dimeric enzyme alkaline phosphatase from Escherichia coli have been investigated. The altered enzymes R10A, R10K, R24A, R24K, T59A, and R10A/R24A, which have amino acid substitutions at the dimer interface, were characterized using kinetic assays, ultracentrifugation, and transverse urea gradient gel electrophoresis. The kinetic data for the wild-type and altered alkaline phosphatases show comparable catalytic behavior with kcat values between 51.3 and 69.5 s−1 and Km values between 14.8 and 26.3 μM. The ultracentrifugation profiles indicate that the wild-type enzyme is more stable than all the interface-modified enzymes. The wild-type enzyme is dimeric in the pH range of pH 4.0 and above, and disassembled at pH 3.5 and below. All the interface-modified enzymes, however, are apparently monomeric at pH 4.0, begin assembly at pH 5.0, and are not fully assembled into the dimeric form until pH 6.0. The results from transverse urea gradient gel electrophoresis show clear and reproducible differences both in the position and the shape of the unfolding patterns; all these modified enzymes are more sensitive to the denaturant and begin to unfold at urea concentrations between 1.0 and 1.5 M; the wild-type enzyme remains in the folded high mobility form beyond 2.5 M urea. Alkaline phosphatase H370A, modified at the active site and not at the dimer interface, resembles the wild-type enzyme both in ultracentrifugation and electrophoresis studies. The results obtained suggest that substitution of a single amino acid at the interface sacrifices not only the integrity of the assembled dimer, but also the stability of the monomer fold, even though the activity of the enzyme at optimal pH remains unaffected and does not appear to depend on interface stability.
doi_str_mv 10.1110/ps.8.5.1152
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2144326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1110_ps_8_5_1152</cupid><sourcerecordid>69772932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4592-6844e008e8f98d4e8481da7a7a56c16abe6e59a37e1a2736802449c355ec600f3</originalsourceid><addsrcrecordid>eNp9kV2L1DAUhoMo7rh65b3kyhvpmKRpJr0RlmX9gIUVUfAunKan26xtU_OhzA_wf5thBllBJJC8JA_veU8OIc8523LO2es1bvW2KboRD8iGS9VWulVfH5INaxWvdK30GXkS4x1jTHJRPyZnnNW1ZkJtyK-L2S2egnU9jbmLyaWcnF8ihUTTiIfLvLhE3ZIwDGCR-oH2bsbgLL2KdjyI0QG1fnIUpm8wuQXpOvq4jpAgIrWQyx6wzxZLlRSyTTnAVCR0bnJp_5Q8GmCK-Ox0npMvb68-X76vrm_efbi8uK6sbFpRKS0lMqZRD63uJWqpeQ-7shpluYIOFTYt1DvkIHalbyakbG3dNGgVY0N9Tt4cfdfczdhbXFLJYdbgZgh748GZv18WN5pb_8MILmUtVDF4eTII_nvGmMzsosVpggV9jka1u51oa1HAV0fQBh9jwOFPEc7MYWxmjUabxhzGVugX93PdY49zKkB9BH66Cff_8zIfP91o1pxsq1MImLvg-ls0dz6HpXzxP2P8BjIathM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69772932</pqid></control><display><type>article</type><title>Amino acid substitutions at the subunit interface of dimeric Escherichia coli alkaline phosphatase cause reduced structural stability</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>MARTIN, DONNA CAROLAN ; PASTRA-LANDIS, S.C. ; KANTROWITZ, EVAN R.</creator><creatorcontrib>MARTIN, DONNA CAROLAN ; PASTRA-LANDIS, S.C. ; KANTROWITZ, EVAN R.</creatorcontrib><description>The consequences of amino acid substitutions at the dimer interface for the strength of the interactions between the monomers and for the catalytic function of the dimeric enzyme alkaline phosphatase from Escherichia coli have been investigated. The altered enzymes R10A, R10K, R24A, R24K, T59A, and R10A/R24A, which have amino acid substitutions at the dimer interface, were characterized using kinetic assays, ultracentrifugation, and transverse urea gradient gel electrophoresis. The kinetic data for the wild-type and altered alkaline phosphatases show comparable catalytic behavior with kcat values between 51.3 and 69.5 s−1 and Km values between 14.8 and 26.3 μM. The ultracentrifugation profiles indicate that the wild-type enzyme is more stable than all the interface-modified enzymes. The wild-type enzyme is dimeric in the pH range of pH 4.0 and above, and disassembled at pH 3.5 and below. All the interface-modified enzymes, however, are apparently monomeric at pH 4.0, begin assembly at pH 5.0, and are not fully assembled into the dimeric form until pH 6.0. The results from transverse urea gradient gel electrophoresis show clear and reproducible differences both in the position and the shape of the unfolding patterns; all these modified enzymes are more sensitive to the denaturant and begin to unfold at urea concentrations between 1.0 and 1.5 M; the wild-type enzyme remains in the folded high mobility form beyond 2.5 M urea. Alkaline phosphatase H370A, modified at the active site and not at the dimer interface, resembles the wild-type enzyme both in ultracentrifugation and electrophoresis studies. The results obtained suggest that substitution of a single amino acid at the interface sacrifices not only the integrity of the assembled dimer, but also the stability of the monomer fold, even though the activity of the enzyme at optimal pH remains unaffected and does not appear to depend on interface stability.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1110/ps.8.5.1152</identifier><identifier>PMID: 10338026</identifier><language>eng</language><publisher>Bristol: Cambridge University Press</publisher><subject>Alkaline Phosphatase - chemistry ; Amino Acids - chemistry ; Chromatography, Gel ; Dimerization ; Electrophoresis ; Escherichia coli - enzymology ; interface ; Kinetics ; Models, Molecular ; Protein Binding ; Protein Conformation ; subunit ; Thermodynamics ; transverse urea gradient gel electrophoresis ; Ultracentrifugation ; unfolding</subject><ispartof>Protein science, 1999-05, Vol.8 (5), p.1152-1159</ispartof><rights>1999 The Protein Society</rights><rights>Copyright © 1999 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4592-6844e008e8f98d4e8481da7a7a56c16abe6e59a37e1a2736802449c355ec600f3</citedby><cites>FETCH-LOGICAL-c4592-6844e008e8f98d4e8481da7a7a56c16abe6e59a37e1a2736802449c355ec600f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2144326/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2144326/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,1414,1430,27911,27912,45561,45562,46396,46820,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10338026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MARTIN, DONNA CAROLAN</creatorcontrib><creatorcontrib>PASTRA-LANDIS, S.C.</creatorcontrib><creatorcontrib>KANTROWITZ, EVAN R.</creatorcontrib><title>Amino acid substitutions at the subunit interface of dimeric Escherichia coli alkaline phosphatase cause reduced structural stability</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>The consequences of amino acid substitutions at the dimer interface for the strength of the interactions between the monomers and for the catalytic function of the dimeric enzyme alkaline phosphatase from Escherichia coli have been investigated. The altered enzymes R10A, R10K, R24A, R24K, T59A, and R10A/R24A, which have amino acid substitutions at the dimer interface, were characterized using kinetic assays, ultracentrifugation, and transverse urea gradient gel electrophoresis. The kinetic data for the wild-type and altered alkaline phosphatases show comparable catalytic behavior with kcat values between 51.3 and 69.5 s−1 and Km values between 14.8 and 26.3 μM. The ultracentrifugation profiles indicate that the wild-type enzyme is more stable than all the interface-modified enzymes. The wild-type enzyme is dimeric in the pH range of pH 4.0 and above, and disassembled at pH 3.5 and below. All the interface-modified enzymes, however, are apparently monomeric at pH 4.0, begin assembly at pH 5.0, and are not fully assembled into the dimeric form until pH 6.0. The results from transverse urea gradient gel electrophoresis show clear and reproducible differences both in the position and the shape of the unfolding patterns; all these modified enzymes are more sensitive to the denaturant and begin to unfold at urea concentrations between 1.0 and 1.5 M; the wild-type enzyme remains in the folded high mobility form beyond 2.5 M urea. Alkaline phosphatase H370A, modified at the active site and not at the dimer interface, resembles the wild-type enzyme both in ultracentrifugation and electrophoresis studies. The results obtained suggest that substitution of a single amino acid at the interface sacrifices not only the integrity of the assembled dimer, but also the stability of the monomer fold, even though the activity of the enzyme at optimal pH remains unaffected and does not appear to depend on interface stability.</description><subject>Alkaline Phosphatase - chemistry</subject><subject>Amino Acids - chemistry</subject><subject>Chromatography, Gel</subject><subject>Dimerization</subject><subject>Electrophoresis</subject><subject>Escherichia coli - enzymology</subject><subject>interface</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>subunit</subject><subject>Thermodynamics</subject><subject>transverse urea gradient gel electrophoresis</subject><subject>Ultracentrifugation</subject><subject>unfolding</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV2L1DAUhoMo7rh65b3kyhvpmKRpJr0RlmX9gIUVUfAunKan26xtU_OhzA_wf5thBllBJJC8JA_veU8OIc8523LO2es1bvW2KboRD8iGS9VWulVfH5INaxWvdK30GXkS4x1jTHJRPyZnnNW1ZkJtyK-L2S2egnU9jbmLyaWcnF8ihUTTiIfLvLhE3ZIwDGCR-oH2bsbgLL2KdjyI0QG1fnIUpm8wuQXpOvq4jpAgIrWQyx6wzxZLlRSyTTnAVCR0bnJp_5Q8GmCK-Ox0npMvb68-X76vrm_efbi8uK6sbFpRKS0lMqZRD63uJWqpeQ-7shpluYIOFTYt1DvkIHalbyakbG3dNGgVY0N9Tt4cfdfczdhbXFLJYdbgZgh748GZv18WN5pb_8MILmUtVDF4eTII_nvGmMzsosVpggV9jka1u51oa1HAV0fQBh9jwOFPEc7MYWxmjUabxhzGVugX93PdY49zKkB9BH66Cff_8zIfP91o1pxsq1MImLvg-ls0dz6HpXzxP2P8BjIathM</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>MARTIN, DONNA CAROLAN</creator><creator>PASTRA-LANDIS, S.C.</creator><creator>KANTROWITZ, EVAN R.</creator><general>Cambridge University Press</general><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19990501</creationdate><title>Amino acid substitutions at the subunit interface of dimeric Escherichia coli alkaline phosphatase cause reduced structural stability</title><author>MARTIN, DONNA CAROLAN ; PASTRA-LANDIS, S.C. ; KANTROWITZ, EVAN R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4592-6844e008e8f98d4e8481da7a7a56c16abe6e59a37e1a2736802449c355ec600f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Alkaline Phosphatase - chemistry</topic><topic>Amino Acids - chemistry</topic><topic>Chromatography, Gel</topic><topic>Dimerization</topic><topic>Electrophoresis</topic><topic>Escherichia coli - enzymology</topic><topic>interface</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>subunit</topic><topic>Thermodynamics</topic><topic>transverse urea gradient gel electrophoresis</topic><topic>Ultracentrifugation</topic><topic>unfolding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MARTIN, DONNA CAROLAN</creatorcontrib><creatorcontrib>PASTRA-LANDIS, S.C.</creatorcontrib><creatorcontrib>KANTROWITZ, EVAN R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MARTIN, DONNA CAROLAN</au><au>PASTRA-LANDIS, S.C.</au><au>KANTROWITZ, EVAN R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amino acid substitutions at the subunit interface of dimeric Escherichia coli alkaline phosphatase cause reduced structural stability</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>1999-05-01</date><risdate>1999</risdate><volume>8</volume><issue>5</issue><spage>1152</spage><epage>1159</epage><pages>1152-1159</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>The consequences of amino acid substitutions at the dimer interface for the strength of the interactions between the monomers and for the catalytic function of the dimeric enzyme alkaline phosphatase from Escherichia coli have been investigated. The altered enzymes R10A, R10K, R24A, R24K, T59A, and R10A/R24A, which have amino acid substitutions at the dimer interface, were characterized using kinetic assays, ultracentrifugation, and transverse urea gradient gel electrophoresis. The kinetic data for the wild-type and altered alkaline phosphatases show comparable catalytic behavior with kcat values between 51.3 and 69.5 s−1 and Km values between 14.8 and 26.3 μM. The ultracentrifugation profiles indicate that the wild-type enzyme is more stable than all the interface-modified enzymes. The wild-type enzyme is dimeric in the pH range of pH 4.0 and above, and disassembled at pH 3.5 and below. All the interface-modified enzymes, however, are apparently monomeric at pH 4.0, begin assembly at pH 5.0, and are not fully assembled into the dimeric form until pH 6.0. The results from transverse urea gradient gel electrophoresis show clear and reproducible differences both in the position and the shape of the unfolding patterns; all these modified enzymes are more sensitive to the denaturant and begin to unfold at urea concentrations between 1.0 and 1.5 M; the wild-type enzyme remains in the folded high mobility form beyond 2.5 M urea. Alkaline phosphatase H370A, modified at the active site and not at the dimer interface, resembles the wild-type enzyme both in ultracentrifugation and electrophoresis studies. The results obtained suggest that substitution of a single amino acid at the interface sacrifices not only the integrity of the assembled dimer, but also the stability of the monomer fold, even though the activity of the enzyme at optimal pH remains unaffected and does not appear to depend on interface stability.</abstract><cop>Bristol</cop><pub>Cambridge University Press</pub><pmid>10338026</pmid><doi>10.1110/ps.8.5.1152</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 1999-05, Vol.8 (5), p.1152-1159
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2144326
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Alkaline Phosphatase - chemistry
Amino Acids - chemistry
Chromatography, Gel
Dimerization
Electrophoresis
Escherichia coli - enzymology
interface
Kinetics
Models, Molecular
Protein Binding
Protein Conformation
subunit
Thermodynamics
transverse urea gradient gel electrophoresis
Ultracentrifugation
unfolding
title Amino acid substitutions at the subunit interface of dimeric Escherichia coli alkaline phosphatase cause reduced structural stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amino%20acid%20substitutions%20at%20the%20subunit%20interface%20of%20dimeric%20Escherichia%20coli%20alkaline%20phosphatase%20cause%20reduced%20structural%20stability&rft.jtitle=Protein%20science&rft.au=MARTIN,%20DONNA%20CAROLAN&rft.date=1999-05-01&rft.volume=8&rft.issue=5&rft.spage=1152&rft.epage=1159&rft.pages=1152-1159&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1110/ps.8.5.1152&rft_dat=%3Cproquest_pubme%3E69772932%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69772932&rft_id=info:pmid/10338026&rft_cupid=10_1110_ps_8_5_1152&rfr_iscdi=true