Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons
We previously described a kinesin-dependent movement of particles in the flagella of Chlamydomonas reinhardtii called intraflagellar transport (IFT) (Kozminski, K.G., K.A. Johnson, P. Forscher, and J.L. Rosenbaum. 1993. Proc. Natl. Acad. Sci. USA. 90:5519-5523). When IFT is inhibited by inactivation...
Gespeichert in:
Veröffentlicht in: | The Journal of cell biology 1998-05, Vol.141 (4), p.993-1008 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1008 |
---|---|
container_issue | 4 |
container_start_page | 993 |
container_title | The Journal of cell biology |
container_volume | 141 |
creator | Cole, D.G. (Yale University, New Haven, CT.) Diener, D.R Himelblau, A.L Beech, P.L Fuster, J.C Rosenbaum, J.L |
description | We previously described a kinesin-dependent movement of particles in the flagella of Chlamydomonas reinhardtii called intraflagellar transport (IFT) (Kozminski, K.G., K.A. Johnson, P. Forscher, and J.L. Rosenbaum. 1993. Proc. Natl. Acad. Sci. USA. 90:5519-5523). When IFT is inhibited by inactivation of a kinesin, FLA10, in the temperature-sensitive mutant, fla10, existing flagella resorb and new flagella cannot be assembled. We report here that: (a) the IFT-associated FLA10 protein is a subunit of a heterotrimeric kinesin; (b) IFT particles are composed of 15 polypeptides comprising two large complexes; (c) the FLA10 kinesin-II and IFT particle polypeptides, in addition to being found in flagella, are highly concentrated around the flagellar basal bodies; and, (d) mutations affecting homologs of two of the IFT particle polypeptides in Caenorhabditis elegans result in defects in the sensory cilia located on the dendritic processes of sensory neurons. In the accompanying report by Pazour, G.J., C.G. Wilkerson, and G.B. Witman (1998. J. Cell Biol. 141:979-992), a Chlamydomonas mutant (fla14) is described in which only the retrograde transport of IFT particles is disrupted, resulting in assembly-defective flagella filled with an excess of IFT particles. This microtubule-dependent transport process, IFT, defined by mutants in both the anterograde (fla10) and retrograde (fla14) transport of isolable particles, is probably essential for the maintenance and assembly of all eukaryotic motile flagella and nonmotile sensory cilia. |
doi_str_mv | 10.1083/jcb.141.4.993 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2132775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1618678</jstor_id><sourcerecordid>1618678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-ec02fddbd4df7dd60b48f50790021470cfe72d8daccbce2d317585a9b853be623</originalsourceid><addsrcrecordid>eNqFkkFv1DAQhSMEKqVw5AaSxQHBIYud2Ou4ByS0orBSJQ60Z8uxJ7teEjv1JEj7k_iXeLWrFrhwsWXN5zczT68oXjK6YLSpP-xsu2CcLfhCqfpRcc4Ep2XDOH1cnFNasVKJSjwtniHuKKVc8vqsOFOiEZzJ8-LXatubYe_iEINB8sMHQB_K9bp0MEJwECbiw5RM15sN9L1JJD8CjjFN5N366ub9JcknGU2avO0BiY1hMj6QMcUJfECS4G72CRzpYiLW996kPTGIMLT9PouTlYEQ09a0zk8eCfSwyR0IQsCY0QBzigGfF0860yO8ON0Xxe3V55vV1_L625f16tN1aQVXUwmWVp1zreOuk84tacubTlCpDl5wSW0HsnKNM9a2FipXM5m9MKptRN3Csqovio9H3XFuB3AWDtv3ekx-yIPraLz-uxL8Vm_iT12xupJSZIG3J4EU72bASQ8e7cG7AHFGLVWjKsnlf0G2FLWopcrgm3_AXZxTyC7kpjLvxuoDVB4hmyJigu5-ZEb1ISk6J0XnpGiuc1Iy__rPPe_pUzRy_dWxvsMppgexJWuWsnn43pmozSZ51LffmVJ5nEbmcX4DJNHRsw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217079139</pqid></control><display><type>article</type><title>Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Cole, D.G. (Yale University, New Haven, CT.) ; Diener, D.R ; Himelblau, A.L ; Beech, P.L ; Fuster, J.C ; Rosenbaum, J.L</creator><creatorcontrib>Cole, D.G. (Yale University, New Haven, CT.) ; Diener, D.R ; Himelblau, A.L ; Beech, P.L ; Fuster, J.C ; Rosenbaum, J.L</creatorcontrib><description>We previously described a kinesin-dependent movement of particles in the flagella of Chlamydomonas reinhardtii called intraflagellar transport (IFT) (Kozminski, K.G., K.A. Johnson, P. Forscher, and J.L. Rosenbaum. 1993. Proc. Natl. Acad. Sci. USA. 90:5519-5523). When IFT is inhibited by inactivation of a kinesin, FLA10, in the temperature-sensitive mutant, fla10, existing flagella resorb and new flagella cannot be assembled. We report here that: (a) the IFT-associated FLA10 protein is a subunit of a heterotrimeric kinesin; (b) IFT particles are composed of 15 polypeptides comprising two large complexes; (c) the FLA10 kinesin-II and IFT particle polypeptides, in addition to being found in flagella, are highly concentrated around the flagellar basal bodies; and, (d) mutations affecting homologs of two of the IFT particle polypeptides in Caenorhabditis elegans result in defects in the sensory cilia located on the dendritic processes of sensory neurons. In the accompanying report by Pazour, G.J., C.G. Wilkerson, and G.B. Witman (1998. J. Cell Biol. 141:979-992), a Chlamydomonas mutant (fla14) is described in which only the retrograde transport of IFT particles is disrupted, resulting in assembly-defective flagella filled with an excess of IFT particles. This microtubule-dependent transport process, IFT, defined by mutants in both the anterograde (fla10) and retrograde (fla14) transport of isolable particles, is probably essential for the maintenance and assembly of all eukaryotic motile flagella and nonmotile sensory cilia.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.141.4.993</identifier><identifier>PMID: 9585417</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>ANIMAL TISSUES ; Animals ; Antibodies ; AXONEMES ; Bacteria ; Body regions ; CAENORHABDITIS ELEGANS ; Caenorhabditis elegans - physiology ; Calcium-Binding Proteins - chemistry ; Calcium-Binding Proteins - isolation & purification ; Calcium-Binding Proteins - metabolism ; Cell lines ; CELL MEMBRANES ; CELL STRUCTURE ; Cells ; Cellular biology ; Centrifugation, Density Gradient ; CHLAMYDOMONAS REINHARDTII ; Chlamydomonas reinhardtii - physiology ; Cilia ; Cilia - physiology ; ESTRUCTURA CELULAR ; FLA10 PROTEIN ; Flagella ; Flagella - physiology ; Flagella - ultrastructure ; FLAGELLAR BASAL BODIES ; FLAGELLAR MEMBRANES ; Fluorescent Antibody Technique, Indirect ; Gels ; IMMUNOCYTOCHEMISTRY ; IMMUNOLOGIE ; IMMUNOLOGY ; INMUNOLOGIA ; Kinesins - metabolism ; MEMBRANAS CELULARES ; MEMBRANE CELLULAIRE ; Microtubules ; Models, Structural ; Molecular Weight ; MOUVEMENT ; MOVEMENT ; MOVIMIENTO ; Muscle Proteins - chemistry ; Muscle Proteins - isolation & purification ; Muscle Proteins - metabolism ; MUTACION ; MUTANT ; MUTANTES ; MUTANTS ; MUTATION ; NERF ; NERVES ; NERVIOS ; Neurons ; Neurons, Afferent - physiology ; PEPTIDE ; PEPTIDES ; PEPTIDOS ; POLYPEPTIDES ; PROTEINAS ; PROTEINE ; PROTEINS ; Rafts ; SENSORY CILIA ; STRUCTURE CELLULAIRE ; TEJIDOS ANIMALES ; TISSU ANIMAL</subject><ispartof>The Journal of cell biology, 1998-05, Vol.141 (4), p.993-1008</ispartof><rights>Copyright 1998 The Rockefeller University Press</rights><rights>Copyright Rockefeller University Press May 18, 1998</rights><rights>1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-ec02fddbd4df7dd60b48f50790021470cfe72d8daccbce2d317585a9b853be623</citedby><cites>FETCH-LOGICAL-c549t-ec02fddbd4df7dd60b48f50790021470cfe72d8daccbce2d317585a9b853be623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9585417$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cole, D.G. (Yale University, New Haven, CT.)</creatorcontrib><creatorcontrib>Diener, D.R</creatorcontrib><creatorcontrib>Himelblau, A.L</creatorcontrib><creatorcontrib>Beech, P.L</creatorcontrib><creatorcontrib>Fuster, J.C</creatorcontrib><creatorcontrib>Rosenbaum, J.L</creatorcontrib><title>Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>We previously described a kinesin-dependent movement of particles in the flagella of Chlamydomonas reinhardtii called intraflagellar transport (IFT) (Kozminski, K.G., K.A. Johnson, P. Forscher, and J.L. Rosenbaum. 1993. Proc. Natl. Acad. Sci. USA. 90:5519-5523). When IFT is inhibited by inactivation of a kinesin, FLA10, in the temperature-sensitive mutant, fla10, existing flagella resorb and new flagella cannot be assembled. We report here that: (a) the IFT-associated FLA10 protein is a subunit of a heterotrimeric kinesin; (b) IFT particles are composed of 15 polypeptides comprising two large complexes; (c) the FLA10 kinesin-II and IFT particle polypeptides, in addition to being found in flagella, are highly concentrated around the flagellar basal bodies; and, (d) mutations affecting homologs of two of the IFT particle polypeptides in Caenorhabditis elegans result in defects in the sensory cilia located on the dendritic processes of sensory neurons. In the accompanying report by Pazour, G.J., C.G. Wilkerson, and G.B. Witman (1998. J. Cell Biol. 141:979-992), a Chlamydomonas mutant (fla14) is described in which only the retrograde transport of IFT particles is disrupted, resulting in assembly-defective flagella filled with an excess of IFT particles. This microtubule-dependent transport process, IFT, defined by mutants in both the anterograde (fla10) and retrograde (fla14) transport of isolable particles, is probably essential for the maintenance and assembly of all eukaryotic motile flagella and nonmotile sensory cilia.</description><subject>ANIMAL TISSUES</subject><subject>Animals</subject><subject>Antibodies</subject><subject>AXONEMES</subject><subject>Bacteria</subject><subject>Body regions</subject><subject>CAENORHABDITIS ELEGANS</subject><subject>Caenorhabditis elegans - physiology</subject><subject>Calcium-Binding Proteins - chemistry</subject><subject>Calcium-Binding Proteins - isolation & purification</subject><subject>Calcium-Binding Proteins - metabolism</subject><subject>Cell lines</subject><subject>CELL MEMBRANES</subject><subject>CELL STRUCTURE</subject><subject>Cells</subject><subject>Cellular biology</subject><subject>Centrifugation, Density Gradient</subject><subject>CHLAMYDOMONAS REINHARDTII</subject><subject>Chlamydomonas reinhardtii - physiology</subject><subject>Cilia</subject><subject>Cilia - physiology</subject><subject>ESTRUCTURA CELULAR</subject><subject>FLA10 PROTEIN</subject><subject>Flagella</subject><subject>Flagella - physiology</subject><subject>Flagella - ultrastructure</subject><subject>FLAGELLAR BASAL BODIES</subject><subject>FLAGELLAR MEMBRANES</subject><subject>Fluorescent Antibody Technique, Indirect</subject><subject>Gels</subject><subject>IMMUNOCYTOCHEMISTRY</subject><subject>IMMUNOLOGIE</subject><subject>IMMUNOLOGY</subject><subject>INMUNOLOGIA</subject><subject>Kinesins - metabolism</subject><subject>MEMBRANAS CELULARES</subject><subject>MEMBRANE CELLULAIRE</subject><subject>Microtubules</subject><subject>Models, Structural</subject><subject>Molecular Weight</subject><subject>MOUVEMENT</subject><subject>MOVEMENT</subject><subject>MOVIMIENTO</subject><subject>Muscle Proteins - chemistry</subject><subject>Muscle Proteins - isolation & purification</subject><subject>Muscle Proteins - metabolism</subject><subject>MUTACION</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>MUTATION</subject><subject>NERF</subject><subject>NERVES</subject><subject>NERVIOS</subject><subject>Neurons</subject><subject>Neurons, Afferent - physiology</subject><subject>PEPTIDE</subject><subject>PEPTIDES</subject><subject>PEPTIDOS</subject><subject>POLYPEPTIDES</subject><subject>PROTEINAS</subject><subject>PROTEINE</subject><subject>PROTEINS</subject><subject>Rafts</subject><subject>SENSORY CILIA</subject><subject>STRUCTURE CELLULAIRE</subject><subject>TEJIDOS ANIMALES</subject><subject>TISSU ANIMAL</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkFv1DAQhSMEKqVw5AaSxQHBIYud2Ou4ByS0orBSJQ60Z8uxJ7teEjv1JEj7k_iXeLWrFrhwsWXN5zczT68oXjK6YLSpP-xsu2CcLfhCqfpRcc4Ep2XDOH1cnFNasVKJSjwtniHuKKVc8vqsOFOiEZzJ8-LXatubYe_iEINB8sMHQB_K9bp0MEJwECbiw5RM15sN9L1JJD8CjjFN5N366ub9JcknGU2avO0BiY1hMj6QMcUJfECS4G72CRzpYiLW996kPTGIMLT9PouTlYEQ09a0zk8eCfSwyR0IQsCY0QBzigGfF0860yO8ON0Xxe3V55vV1_L625f16tN1aQVXUwmWVp1zreOuk84tacubTlCpDl5wSW0HsnKNM9a2FipXM5m9MKptRN3Csqovio9H3XFuB3AWDtv3ekx-yIPraLz-uxL8Vm_iT12xupJSZIG3J4EU72bASQ8e7cG7AHFGLVWjKsnlf0G2FLWopcrgm3_AXZxTyC7kpjLvxuoDVB4hmyJigu5-ZEb1ISk6J0XnpGiuc1Iy__rPPe_pUzRy_dWxvsMppgexJWuWsnn43pmozSZ51LffmVJ5nEbmcX4DJNHRsw</recordid><startdate>19980518</startdate><enddate>19980518</enddate><creator>Cole, D.G. (Yale University, New Haven, CT.)</creator><creator>Diener, D.R</creator><creator>Himelblau, A.L</creator><creator>Beech, P.L</creator><creator>Fuster, J.C</creator><creator>Rosenbaum, J.L</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19980518</creationdate><title>Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons</title><author>Cole, D.G. (Yale University, New Haven, CT.) ; Diener, D.R ; Himelblau, A.L ; Beech, P.L ; Fuster, J.C ; Rosenbaum, J.L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-ec02fddbd4df7dd60b48f50790021470cfe72d8daccbce2d317585a9b853be623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>ANIMAL TISSUES</topic><topic>Animals</topic><topic>Antibodies</topic><topic>AXONEMES</topic><topic>Bacteria</topic><topic>Body regions</topic><topic>CAENORHABDITIS ELEGANS</topic><topic>Caenorhabditis elegans - physiology</topic><topic>Calcium-Binding Proteins - chemistry</topic><topic>Calcium-Binding Proteins - isolation & purification</topic><topic>Calcium-Binding Proteins - metabolism</topic><topic>Cell lines</topic><topic>CELL MEMBRANES</topic><topic>CELL STRUCTURE</topic><topic>Cells</topic><topic>Cellular biology</topic><topic>Centrifugation, Density Gradient</topic><topic>CHLAMYDOMONAS REINHARDTII</topic><topic>Chlamydomonas reinhardtii - physiology</topic><topic>Cilia</topic><topic>Cilia - physiology</topic><topic>ESTRUCTURA CELULAR</topic><topic>FLA10 PROTEIN</topic><topic>Flagella</topic><topic>Flagella - physiology</topic><topic>Flagella - ultrastructure</topic><topic>FLAGELLAR BASAL BODIES</topic><topic>FLAGELLAR MEMBRANES</topic><topic>Fluorescent Antibody Technique, Indirect</topic><topic>Gels</topic><topic>IMMUNOCYTOCHEMISTRY</topic><topic>IMMUNOLOGIE</topic><topic>IMMUNOLOGY</topic><topic>INMUNOLOGIA</topic><topic>Kinesins - metabolism</topic><topic>MEMBRANAS CELULARES</topic><topic>MEMBRANE CELLULAIRE</topic><topic>Microtubules</topic><topic>Models, Structural</topic><topic>Molecular Weight</topic><topic>MOUVEMENT</topic><topic>MOVEMENT</topic><topic>MOVIMIENTO</topic><topic>Muscle Proteins - chemistry</topic><topic>Muscle Proteins - isolation & purification</topic><topic>Muscle Proteins - metabolism</topic><topic>MUTACION</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>MUTATION</topic><topic>NERF</topic><topic>NERVES</topic><topic>NERVIOS</topic><topic>Neurons</topic><topic>Neurons, Afferent - physiology</topic><topic>PEPTIDE</topic><topic>PEPTIDES</topic><topic>PEPTIDOS</topic><topic>POLYPEPTIDES</topic><topic>PROTEINAS</topic><topic>PROTEINE</topic><topic>PROTEINS</topic><topic>Rafts</topic><topic>SENSORY CILIA</topic><topic>STRUCTURE CELLULAIRE</topic><topic>TEJIDOS ANIMALES</topic><topic>TISSU ANIMAL</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cole, D.G. (Yale University, New Haven, CT.)</creatorcontrib><creatorcontrib>Diener, D.R</creatorcontrib><creatorcontrib>Himelblau, A.L</creatorcontrib><creatorcontrib>Beech, P.L</creatorcontrib><creatorcontrib>Fuster, J.C</creatorcontrib><creatorcontrib>Rosenbaum, J.L</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cole, D.G. (Yale University, New Haven, CT.)</au><au>Diener, D.R</au><au>Himelblau, A.L</au><au>Beech, P.L</au><au>Fuster, J.C</au><au>Rosenbaum, J.L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>1998-05-18</date><risdate>1998</risdate><volume>141</volume><issue>4</issue><spage>993</spage><epage>1008</epage><pages>993-1008</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>We previously described a kinesin-dependent movement of particles in the flagella of Chlamydomonas reinhardtii called intraflagellar transport (IFT) (Kozminski, K.G., K.A. Johnson, P. Forscher, and J.L. Rosenbaum. 1993. Proc. Natl. Acad. Sci. USA. 90:5519-5523). When IFT is inhibited by inactivation of a kinesin, FLA10, in the temperature-sensitive mutant, fla10, existing flagella resorb and new flagella cannot be assembled. We report here that: (a) the IFT-associated FLA10 protein is a subunit of a heterotrimeric kinesin; (b) IFT particles are composed of 15 polypeptides comprising two large complexes; (c) the FLA10 kinesin-II and IFT particle polypeptides, in addition to being found in flagella, are highly concentrated around the flagellar basal bodies; and, (d) mutations affecting homologs of two of the IFT particle polypeptides in Caenorhabditis elegans result in defects in the sensory cilia located on the dendritic processes of sensory neurons. In the accompanying report by Pazour, G.J., C.G. Wilkerson, and G.B. Witman (1998. J. Cell Biol. 141:979-992), a Chlamydomonas mutant (fla14) is described in which only the retrograde transport of IFT particles is disrupted, resulting in assembly-defective flagella filled with an excess of IFT particles. This microtubule-dependent transport process, IFT, defined by mutants in both the anterograde (fla10) and retrograde (fla14) transport of isolable particles, is probably essential for the maintenance and assembly of all eukaryotic motile flagella and nonmotile sensory cilia.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>9585417</pmid><doi>10.1083/jcb.141.4.993</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9525 |
ispartof | The Journal of cell biology, 1998-05, Vol.141 (4), p.993-1008 |
issn | 0021-9525 1540-8140 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2132775 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | ANIMAL TISSUES Animals Antibodies AXONEMES Bacteria Body regions CAENORHABDITIS ELEGANS Caenorhabditis elegans - physiology Calcium-Binding Proteins - chemistry Calcium-Binding Proteins - isolation & purification Calcium-Binding Proteins - metabolism Cell lines CELL MEMBRANES CELL STRUCTURE Cells Cellular biology Centrifugation, Density Gradient CHLAMYDOMONAS REINHARDTII Chlamydomonas reinhardtii - physiology Cilia Cilia - physiology ESTRUCTURA CELULAR FLA10 PROTEIN Flagella Flagella - physiology Flagella - ultrastructure FLAGELLAR BASAL BODIES FLAGELLAR MEMBRANES Fluorescent Antibody Technique, Indirect Gels IMMUNOCYTOCHEMISTRY IMMUNOLOGIE IMMUNOLOGY INMUNOLOGIA Kinesins - metabolism MEMBRANAS CELULARES MEMBRANE CELLULAIRE Microtubules Models, Structural Molecular Weight MOUVEMENT MOVEMENT MOVIMIENTO Muscle Proteins - chemistry Muscle Proteins - isolation & purification Muscle Proteins - metabolism MUTACION MUTANT MUTANTES MUTANTS MUTATION NERF NERVES NERVIOS Neurons Neurons, Afferent - physiology PEPTIDE PEPTIDES PEPTIDOS POLYPEPTIDES PROTEINAS PROTEINE PROTEINS Rafts SENSORY CILIA STRUCTURE CELLULAIRE TEJIDOS ANIMALES TISSU ANIMAL |
title | Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chlamydomonas%20kinesin-II-dependent%20intraflagellar%20transport%20(IFT):%20IFT%20particles%20contain%20proteins%20required%20for%20ciliary%20assembly%20in%20Caenorhabditis%20elegans%20sensory%20neurons&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Cole,%20D.G.%20(Yale%20University,%20New%20Haven,%20CT.)&rft.date=1998-05-18&rft.volume=141&rft.issue=4&rft.spage=993&rft.epage=1008&rft.pages=993-1008&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.141.4.993&rft_dat=%3Cjstor_pubme%3E1618678%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217079139&rft_id=info:pmid/9585417&rft_jstor_id=1618678&rfr_iscdi=true |