The NH2 Terminus of Preproinsulin Directs the Translocation and Glycosylation of a Bacterial Cytoplasmic Protein by Mammalian Microsomal Membranes
To investigate putative sorting domains in precursors to polypeptide hormones, we have constructed fusion proteins between the amino terminus of preproinsulin (ppI) and the bacterial cytoplasmic enzyme chloramphenicol acetyltransferase (CAT). Our aim is to identify sequences in ppI, other than the s...
Gespeichert in:
Veröffentlicht in: | The Journal of cell biology 1986-12, Vol.103 (6), p.2263-2272 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2272 |
---|---|
container_issue | 6 |
container_start_page | 2263 |
container_title | The Journal of cell biology |
container_volume | 103 |
creator | Eskridge, Etta M. Shields, Dennis |
description | To investigate putative sorting domains in precursors to polypeptide hormones, we have constructed fusion proteins between the amino terminus of preproinsulin (ppI) and the bacterial cytoplasmic enzyme chloramphenicol acetyltransferase (CAT). Our aim is to identify sequences in ppI, other than the signal peptide, that are necessary to mediate the intracellular sorting and secretion of the bacterial enzyme. Here we describe the in vitro translation of mRNAs encoding two chimeric molecules containing 71 and 38 residues, respectively, of the ppI NH2 terminus fused to the complete CAT sequence. The ppI signal peptide and 14 residues of the B-chain were sufficient to direct the translocation and segregation of CAT into microsomal membrane vesicles. Furthermore, the CAT enzyme underwent N-linked glycosylation, presumably at a single cryptic site, with an efficiency that was comparable to that of native glycoproteins synthesized in vitro. Partial amino-terminal sequencing demonstrated that the downstream sequences in the fusion proteins did not alter the specificity of signal peptidase, hence cleavage of the ppI signal peptide occurred at precisely the same site as in the native precursor. This is in contrast to results found in prokaryotic systems. These data demonstrate that the first 38 residues of ppI encode all the information necessary for binding to the endoplasmic reticulum membrane, translocation, and proteolytic (signal sequence) processing. |
doi_str_mv | 10.1083/jcb.103.6.2263 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2114610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1612178</jstor_id><sourcerecordid>1612178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-c11cee67fca209de5fc0043cddca037a2be78a8528982a11241732b79be445663</originalsourceid><addsrcrecordid>eNpVUU2P0zAUtBBo6RaunEDyAe0txV-xkwsSFNhF2gKHcrZeXId15cTFdpDyN_jFuGpV4ORnz7x5njcIvaBkRUnD3-xNVwq-kivGJH-EFrQWpGqoII_RghBGq7Zm9VN0ndKeECKU4FfoihPGeasW6Pf2weIvdwxvbRzcOCUcevwt2kMMbkyTdyP-4KI1OeFcmNsIY_LBQHZhxDDu8K2fTUizP72UZsDvwWQbHXi8nnM4eEiDM0U0ZFvkuhlvYBjAOxjxxpkYUig3vLFDV9Rteoae9OCTfX4-l-j7p4_b9V11__X28_rdfWUEr3NlKDXWStUbYKTd2bo3xR43u50BwhWwzqoGmpo1bcOAUiao4qxTbWeFqKXkS_T2pHuYusHujB1zBK8P0Q0QZx3A6f-R0T3oH-GXZpQKWXa-RDdngRh-TjZlPbhkrPfFRZiSVopKSSgvxNWJeDSbou0vQyjRxxR1SbEUXEt9TLE0vPr3axf6ObaCvz7jkAz4vuzNuHShNazhrTjKvDzR9imH-HeopIyqhv8BztOyKw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77166013</pqid></control><display><type>article</type><title>The NH2 Terminus of Preproinsulin Directs the Translocation and Glycosylation of a Bacterial Cytoplasmic Protein by Mammalian Microsomal Membranes</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Eskridge, Etta M. ; Shields, Dennis</creator><creatorcontrib>Eskridge, Etta M. ; Shields, Dennis</creatorcontrib><description>To investigate putative sorting domains in precursors to polypeptide hormones, we have constructed fusion proteins between the amino terminus of preproinsulin (ppI) and the bacterial cytoplasmic enzyme chloramphenicol acetyltransferase (CAT). Our aim is to identify sequences in ppI, other than the signal peptide, that are necessary to mediate the intracellular sorting and secretion of the bacterial enzyme. Here we describe the in vitro translation of mRNAs encoding two chimeric molecules containing 71 and 38 residues, respectively, of the ppI NH2 terminus fused to the complete CAT sequence. The ppI signal peptide and 14 residues of the B-chain were sufficient to direct the translocation and segregation of CAT into microsomal membrane vesicles. Furthermore, the CAT enzyme underwent N-linked glycosylation, presumably at a single cryptic site, with an efficiency that was comparable to that of native glycoproteins synthesized in vitro. Partial amino-terminal sequencing demonstrated that the downstream sequences in the fusion proteins did not alter the specificity of signal peptidase, hence cleavage of the ppI signal peptide occurred at precisely the same site as in the native precursor. This is in contrast to results found in prokaryotic systems. These data demonstrate that the first 38 residues of ppI encode all the information necessary for binding to the endoplasmic reticulum membrane, translocation, and proteolytic (signal sequence) processing.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.103.6.2263</identifier><identifier>PMID: 3023397</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>New York, NY: Rockefeller University Press</publisher><subject>Acetyltransferases - genetics ; Amino acids ; Animals ; Antibodies ; Bacillus subtilis - enzymology ; Bacillus subtilis - genetics ; Biological and medical sciences ; Chloramphenicol O-Acetyltransferase ; Cytoplasm - enzymology ; DNA - metabolism ; DNA Restriction Enzymes ; Enzymes ; Fishes ; Fundamental and applied biological sciences. Psychology ; Gels ; Genes ; Genes, Bacterial ; Insulin ; Intracellular Membranes - metabolism ; Islets of Langerhans - metabolism ; Microsomes - metabolism ; Molecular and cellular biology ; Molecular genetics ; Molecules ; P branes ; Plasmids ; Proinsulin - genetics ; Protein Biosynthesis ; Protein precursors ; Protein Precursors - genetics ; Protein Processing, Post-Translational ; Protein transport ; Transcription, Genetic ; Translation. Translation factors. Protein processing</subject><ispartof>The Journal of cell biology, 1986-12, Vol.103 (6), p.2263-2272</ispartof><rights>Copyright 1986 The Rockefeller University Press</rights><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-c11cee67fca209de5fc0043cddca037a2be78a8528982a11241732b79be445663</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8283943$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3023397$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eskridge, Etta M.</creatorcontrib><creatorcontrib>Shields, Dennis</creatorcontrib><title>The NH2 Terminus of Preproinsulin Directs the Translocation and Glycosylation of a Bacterial Cytoplasmic Protein by Mammalian Microsomal Membranes</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>To investigate putative sorting domains in precursors to polypeptide hormones, we have constructed fusion proteins between the amino terminus of preproinsulin (ppI) and the bacterial cytoplasmic enzyme chloramphenicol acetyltransferase (CAT). Our aim is to identify sequences in ppI, other than the signal peptide, that are necessary to mediate the intracellular sorting and secretion of the bacterial enzyme. Here we describe the in vitro translation of mRNAs encoding two chimeric molecules containing 71 and 38 residues, respectively, of the ppI NH2 terminus fused to the complete CAT sequence. The ppI signal peptide and 14 residues of the B-chain were sufficient to direct the translocation and segregation of CAT into microsomal membrane vesicles. Furthermore, the CAT enzyme underwent N-linked glycosylation, presumably at a single cryptic site, with an efficiency that was comparable to that of native glycoproteins synthesized in vitro. Partial amino-terminal sequencing demonstrated that the downstream sequences in the fusion proteins did not alter the specificity of signal peptidase, hence cleavage of the ppI signal peptide occurred at precisely the same site as in the native precursor. This is in contrast to results found in prokaryotic systems. These data demonstrate that the first 38 residues of ppI encode all the information necessary for binding to the endoplasmic reticulum membrane, translocation, and proteolytic (signal sequence) processing.</description><subject>Acetyltransferases - genetics</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Bacillus subtilis - enzymology</subject><subject>Bacillus subtilis - genetics</subject><subject>Biological and medical sciences</subject><subject>Chloramphenicol O-Acetyltransferase</subject><subject>Cytoplasm - enzymology</subject><subject>DNA - metabolism</subject><subject>DNA Restriction Enzymes</subject><subject>Enzymes</subject><subject>Fishes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gels</subject><subject>Genes</subject><subject>Genes, Bacterial</subject><subject>Insulin</subject><subject>Intracellular Membranes - metabolism</subject><subject>Islets of Langerhans - metabolism</subject><subject>Microsomes - metabolism</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecules</subject><subject>P branes</subject><subject>Plasmids</subject><subject>Proinsulin - genetics</subject><subject>Protein Biosynthesis</subject><subject>Protein precursors</subject><subject>Protein Precursors - genetics</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein transport</subject><subject>Transcription, Genetic</subject><subject>Translation. Translation factors. Protein processing</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU2P0zAUtBBo6RaunEDyAe0txV-xkwsSFNhF2gKHcrZeXId15cTFdpDyN_jFuGpV4ORnz7x5njcIvaBkRUnD3-xNVwq-kivGJH-EFrQWpGqoII_RghBGq7Zm9VN0ndKeECKU4FfoihPGeasW6Pf2weIvdwxvbRzcOCUcevwt2kMMbkyTdyP-4KI1OeFcmNsIY_LBQHZhxDDu8K2fTUizP72UZsDvwWQbHXi8nnM4eEiDM0U0ZFvkuhlvYBjAOxjxxpkYUig3vLFDV9Rteoae9OCTfX4-l-j7p4_b9V11__X28_rdfWUEr3NlKDXWStUbYKTd2bo3xR43u50BwhWwzqoGmpo1bcOAUiao4qxTbWeFqKXkS_T2pHuYusHujB1zBK8P0Q0QZx3A6f-R0T3oH-GXZpQKWXa-RDdngRh-TjZlPbhkrPfFRZiSVopKSSgvxNWJeDSbou0vQyjRxxR1SbEUXEt9TLE0vPr3axf6ObaCvz7jkAz4vuzNuHShNazhrTjKvDzR9imH-HeopIyqhv8BztOyKw</recordid><startdate>19861201</startdate><enddate>19861201</enddate><creator>Eskridge, Etta M.</creator><creator>Shields, Dennis</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19861201</creationdate><title>The NH2 Terminus of Preproinsulin Directs the Translocation and Glycosylation of a Bacterial Cytoplasmic Protein by Mammalian Microsomal Membranes</title><author>Eskridge, Etta M. ; Shields, Dennis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-c11cee67fca209de5fc0043cddca037a2be78a8528982a11241732b79be445663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Acetyltransferases - genetics</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Bacillus subtilis - enzymology</topic><topic>Bacillus subtilis - genetics</topic><topic>Biological and medical sciences</topic><topic>Chloramphenicol O-Acetyltransferase</topic><topic>Cytoplasm - enzymology</topic><topic>DNA - metabolism</topic><topic>DNA Restriction Enzymes</topic><topic>Enzymes</topic><topic>Fishes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gels</topic><topic>Genes</topic><topic>Genes, Bacterial</topic><topic>Insulin</topic><topic>Intracellular Membranes - metabolism</topic><topic>Islets of Langerhans - metabolism</topic><topic>Microsomes - metabolism</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecules</topic><topic>P branes</topic><topic>Plasmids</topic><topic>Proinsulin - genetics</topic><topic>Protein Biosynthesis</topic><topic>Protein precursors</topic><topic>Protein Precursors - genetics</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein transport</topic><topic>Transcription, Genetic</topic><topic>Translation. Translation factors. Protein processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eskridge, Etta M.</creatorcontrib><creatorcontrib>Shields, Dennis</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eskridge, Etta M.</au><au>Shields, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The NH2 Terminus of Preproinsulin Directs the Translocation and Glycosylation of a Bacterial Cytoplasmic Protein by Mammalian Microsomal Membranes</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>1986-12-01</date><risdate>1986</risdate><volume>103</volume><issue>6</issue><spage>2263</spage><epage>2272</epage><pages>2263-2272</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>To investigate putative sorting domains in precursors to polypeptide hormones, we have constructed fusion proteins between the amino terminus of preproinsulin (ppI) and the bacterial cytoplasmic enzyme chloramphenicol acetyltransferase (CAT). Our aim is to identify sequences in ppI, other than the signal peptide, that are necessary to mediate the intracellular sorting and secretion of the bacterial enzyme. Here we describe the in vitro translation of mRNAs encoding two chimeric molecules containing 71 and 38 residues, respectively, of the ppI NH2 terminus fused to the complete CAT sequence. The ppI signal peptide and 14 residues of the B-chain were sufficient to direct the translocation and segregation of CAT into microsomal membrane vesicles. Furthermore, the CAT enzyme underwent N-linked glycosylation, presumably at a single cryptic site, with an efficiency that was comparable to that of native glycoproteins synthesized in vitro. Partial amino-terminal sequencing demonstrated that the downstream sequences in the fusion proteins did not alter the specificity of signal peptidase, hence cleavage of the ppI signal peptide occurred at precisely the same site as in the native precursor. This is in contrast to results found in prokaryotic systems. These data demonstrate that the first 38 residues of ppI encode all the information necessary for binding to the endoplasmic reticulum membrane, translocation, and proteolytic (signal sequence) processing.</abstract><cop>New York, NY</cop><pub>Rockefeller University Press</pub><pmid>3023397</pmid><doi>10.1083/jcb.103.6.2263</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9525 |
ispartof | The Journal of cell biology, 1986-12, Vol.103 (6), p.2263-2272 |
issn | 0021-9525 1540-8140 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2114610 |
source | MEDLINE; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Acetyltransferases - genetics Amino acids Animals Antibodies Bacillus subtilis - enzymology Bacillus subtilis - genetics Biological and medical sciences Chloramphenicol O-Acetyltransferase Cytoplasm - enzymology DNA - metabolism DNA Restriction Enzymes Enzymes Fishes Fundamental and applied biological sciences. Psychology Gels Genes Genes, Bacterial Insulin Intracellular Membranes - metabolism Islets of Langerhans - metabolism Microsomes - metabolism Molecular and cellular biology Molecular genetics Molecules P branes Plasmids Proinsulin - genetics Protein Biosynthesis Protein precursors Protein Precursors - genetics Protein Processing, Post-Translational Protein transport Transcription, Genetic Translation. Translation factors. Protein processing |
title | The NH2 Terminus of Preproinsulin Directs the Translocation and Glycosylation of a Bacterial Cytoplasmic Protein by Mammalian Microsomal Membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20NH2%20Terminus%20of%20Preproinsulin%20Directs%20the%20Translocation%20and%20Glycosylation%20of%20a%20Bacterial%20Cytoplasmic%20Protein%20by%20Mammalian%20Microsomal%20Membranes&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Eskridge,%20Etta%20M.&rft.date=1986-12-01&rft.volume=103&rft.issue=6&rft.spage=2263&rft.epage=2272&rft.pages=2263-2272&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.103.6.2263&rft_dat=%3Cjstor_pubme%3E1612178%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77166013&rft_id=info:pmid/3023397&rft_jstor_id=1612178&rfr_iscdi=true |