Resonance Energy Transfer Microscopy: Observations of Membrane-Bound Fluorescent Probes in Model Membranes and in Living Cells

A conventional fluorescence microscope was modified to observe the sites of resonance energy transfer (RET) between fluorescent probes in model membranes and in living cells. These modifications, and the parameters necessary to observe RET between membrane-bound fluorochromes, are detailed for a sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of cell biology 1986-10, Vol.103 (4), p.1221-1234
Hauptverfasser: Uster, Paul S., Pagano, Richard E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1234
container_issue 4
container_start_page 1221
container_title The Journal of cell biology
container_volume 103
creator Uster, Paul S.
Pagano, Richard E.
description A conventional fluorescence microscope was modified to observe the sites of resonance energy transfer (RET) between fluorescent probes in model membranes and in living cells. These modifications, and the parameters necessary to observe RET between membrane-bound fluorochromes, are detailed for a system that uses N-4-nitrobenzo-2-oxa-1,3-diazole (NBD) or fluorescein as the energy donor and sulforhodamine as the energy acceptor. The necessary parameters for RET in this system were first optimized using liposomes. Both quenching of the energy donor and sensitized fluorescence of the energy acceptor could be directly observed in the microscope. RET microscopy was then used in cultured fibroblasts to identify those intracellular organelles labeled by the lipid probe, N-SRh-decylamine (N- SRh- C10). This was done by observing the sites of RET in cells doubly labeled with N- SRh- C10 and an NBD-labeled lipid previously shown to label the endoplasmic reticulum, mitochondria, and nuclear envelope. RET microscopy was also used in cells treated with fluorescein-labeled Lens culinaris agglutinin and a sulforhodamine derivative of phosphatidylcholine to examine the internalization of plasma membrane lipid and protein probes. After internalization, the fluorescent lectin resided in most, but not all of the intracellular compartments labeled by the fluorescent lipid, suggesting sorting of the membrane-bound lectin into a subset of internal compartments. We conclude that RET microscopy can co-localize different membrane-bound components at high resolution, and may be particularly useful in examining temporal and spatial changes in the distribution of fluorescent molecules in membranes of the living cell.
doi_str_mv 10.1083/jcb.103.4.1221
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2114341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1612075</jstor_id><sourcerecordid>1612075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-824cac220eca048579fa1df71070c660599a38a81b6aec79c26d8a97fc17835d3</originalsourceid><addsrcrecordid>eNqFkcFv0zAUxi0EGmXjygkkHxC3dH62EzsckKDaGFKrITTOluM4xVVqd3ZSqRf-dhy1KuPEyU9-P39-7_sQegNkDkSy641pcsHmfA6UwjM0g5KTQgInz9GMEApFXdLyJXqV0oYQwgVnF-iCCQEVYzP0-4dNwWtvLL7xNq4P-CFqnzob8cqZGJIJu8NHfN8kG_d6cMEnHDq8stsmc7b4Ekbf4tt-DNEmY_2Av8fQ2ISdx6vQ2v6MJqwzma-Xbu_8Gi9s36cr9KLTfbKvT-cl-nl787C4K5b3X78tPi8Lw6tqKCTlRhtKiTWacFmKutPQdgKIIKaqSFnXmkktoam0NaI2tGqlrkVnQEhWtuwSfTrq7sZma9tp0Kh7tYtuq-NBBe3Uvx3vfql12CsKwBmHLPDhJBDD42jToLYu79v3ebMwJpX9zOZC-V8QuKB1Vs3g_AhOLqdou_M0QNQUrcrR5oIprqZo84N3T3c446csc__9qa-T0X2XTTcunTEJrAY-Dfj2iG3SEOLfTyugRJTsD3_nt30</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14729211</pqid></control><display><type>article</type><title>Resonance Energy Transfer Microscopy: Observations of Membrane-Bound Fluorescent Probes in Model Membranes and in Living Cells</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Uster, Paul S. ; Pagano, Richard E.</creator><creatorcontrib>Uster, Paul S. ; Pagano, Richard E.</creatorcontrib><description>A conventional fluorescence microscope was modified to observe the sites of resonance energy transfer (RET) between fluorescent probes in model membranes and in living cells. These modifications, and the parameters necessary to observe RET between membrane-bound fluorochromes, are detailed for a system that uses N-4-nitrobenzo-2-oxa-1,3-diazole (NBD) or fluorescein as the energy donor and sulforhodamine as the energy acceptor. The necessary parameters for RET in this system were first optimized using liposomes. Both quenching of the energy donor and sensitized fluorescence of the energy acceptor could be directly observed in the microscope. RET microscopy was then used in cultured fibroblasts to identify those intracellular organelles labeled by the lipid probe, N-SRh-decylamine (N- SRh- C10). This was done by observing the sites of RET in cells doubly labeled with N- SRh- C10 and an NBD-labeled lipid previously shown to label the endoplasmic reticulum, mitochondria, and nuclear envelope. RET microscopy was also used in cells treated with fluorescein-labeled Lens culinaris agglutinin and a sulforhodamine derivative of phosphatidylcholine to examine the internalization of plasma membrane lipid and protein probes. After internalization, the fluorescent lectin resided in most, but not all of the intracellular compartments labeled by the fluorescent lipid, suggesting sorting of the membrane-bound lectin into a subset of internal compartments. We conclude that RET microscopy can co-localize different membrane-bound components at high resolution, and may be particularly useful in examining temporal and spatial changes in the distribution of fluorescent molecules in membranes of the living cell.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.103.4.1221</identifier><identifier>PMID: 3771633</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>New York, NY: Rockefeller University Press</publisher><subject>Animals ; Biological and medical sciences ; Cell Line ; Cell Membrane - ultrastructure ; Cell membranes ; Cells ; Cricetinae ; Delta cells ; Diverse techniques ; Energy transfer ; Fibroblasts ; Fibroblasts - ultrastructure ; Fluorescence ; Fluorescent Dyes - analysis ; fluorescent probes ; Fundamental and applied biological sciences. Psychology ; Kidney ; Lectins ; Lectins - analysis ; Lipids ; Liposomes ; Membrane Lipids - analysis ; Mesocricetus ; Microscopy ; Microscopy, Fluorescence - instrumentation ; Microscopy, Fluorescence - methods ; Molecular and cellular biology ; Plant Lectins</subject><ispartof>The Journal of cell biology, 1986-10, Vol.103 (4), p.1221-1234</ispartof><rights>Copyright 1986 The Rockefeller University Press</rights><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-824cac220eca048579fa1df71070c660599a38a81b6aec79c26d8a97fc17835d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8139145$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3771633$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uster, Paul S.</creatorcontrib><creatorcontrib>Pagano, Richard E.</creatorcontrib><title>Resonance Energy Transfer Microscopy: Observations of Membrane-Bound Fluorescent Probes in Model Membranes and in Living Cells</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>A conventional fluorescence microscope was modified to observe the sites of resonance energy transfer (RET) between fluorescent probes in model membranes and in living cells. These modifications, and the parameters necessary to observe RET between membrane-bound fluorochromes, are detailed for a system that uses N-4-nitrobenzo-2-oxa-1,3-diazole (NBD) or fluorescein as the energy donor and sulforhodamine as the energy acceptor. The necessary parameters for RET in this system were first optimized using liposomes. Both quenching of the energy donor and sensitized fluorescence of the energy acceptor could be directly observed in the microscope. RET microscopy was then used in cultured fibroblasts to identify those intracellular organelles labeled by the lipid probe, N-SRh-decylamine (N- SRh- C10). This was done by observing the sites of RET in cells doubly labeled with N- SRh- C10 and an NBD-labeled lipid previously shown to label the endoplasmic reticulum, mitochondria, and nuclear envelope. RET microscopy was also used in cells treated with fluorescein-labeled Lens culinaris agglutinin and a sulforhodamine derivative of phosphatidylcholine to examine the internalization of plasma membrane lipid and protein probes. After internalization, the fluorescent lectin resided in most, but not all of the intracellular compartments labeled by the fluorescent lipid, suggesting sorting of the membrane-bound lectin into a subset of internal compartments. We conclude that RET microscopy can co-localize different membrane-bound components at high resolution, and may be particularly useful in examining temporal and spatial changes in the distribution of fluorescent molecules in membranes of the living cell.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell Line</subject><subject>Cell Membrane - ultrastructure</subject><subject>Cell membranes</subject><subject>Cells</subject><subject>Cricetinae</subject><subject>Delta cells</subject><subject>Diverse techniques</subject><subject>Energy transfer</subject><subject>Fibroblasts</subject><subject>Fibroblasts - ultrastructure</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - analysis</subject><subject>fluorescent probes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Kidney</subject><subject>Lectins</subject><subject>Lectins - analysis</subject><subject>Lipids</subject><subject>Liposomes</subject><subject>Membrane Lipids - analysis</subject><subject>Mesocricetus</subject><subject>Microscopy</subject><subject>Microscopy, Fluorescence - instrumentation</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Molecular and cellular biology</subject><subject>Plant Lectins</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFv0zAUxi0EGmXjygkkHxC3dH62EzsckKDaGFKrITTOluM4xVVqd3ZSqRf-dhy1KuPEyU9-P39-7_sQegNkDkSy641pcsHmfA6UwjM0g5KTQgInz9GMEApFXdLyJXqV0oYQwgVnF-iCCQEVYzP0-4dNwWtvLL7xNq4P-CFqnzob8cqZGJIJu8NHfN8kG_d6cMEnHDq8stsmc7b4Ekbf4tt-DNEmY_2Av8fQ2ISdx6vQ2v6MJqwzma-Xbu_8Gi9s36cr9KLTfbKvT-cl-nl787C4K5b3X78tPi8Lw6tqKCTlRhtKiTWacFmKutPQdgKIIKaqSFnXmkktoam0NaI2tGqlrkVnQEhWtuwSfTrq7sZma9tp0Kh7tYtuq-NBBe3Uvx3vfql12CsKwBmHLPDhJBDD42jToLYu79v3ebMwJpX9zOZC-V8QuKB1Vs3g_AhOLqdou_M0QNQUrcrR5oIprqZo84N3T3c446csc__9qa-T0X2XTTcunTEJrAY-Dfj2iG3SEOLfTyugRJTsD3_nt30</recordid><startdate>19861001</startdate><enddate>19861001</enddate><creator>Uster, Paul S.</creator><creator>Pagano, Richard E.</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19861001</creationdate><title>Resonance Energy Transfer Microscopy: Observations of Membrane-Bound Fluorescent Probes in Model Membranes and in Living Cells</title><author>Uster, Paul S. ; Pagano, Richard E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-824cac220eca048579fa1df71070c660599a38a81b6aec79c26d8a97fc17835d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell Line</topic><topic>Cell Membrane - ultrastructure</topic><topic>Cell membranes</topic><topic>Cells</topic><topic>Cricetinae</topic><topic>Delta cells</topic><topic>Diverse techniques</topic><topic>Energy transfer</topic><topic>Fibroblasts</topic><topic>Fibroblasts - ultrastructure</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - analysis</topic><topic>fluorescent probes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Kidney</topic><topic>Lectins</topic><topic>Lectins - analysis</topic><topic>Lipids</topic><topic>Liposomes</topic><topic>Membrane Lipids - analysis</topic><topic>Mesocricetus</topic><topic>Microscopy</topic><topic>Microscopy, Fluorescence - instrumentation</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Molecular and cellular biology</topic><topic>Plant Lectins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uster, Paul S.</creatorcontrib><creatorcontrib>Pagano, Richard E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uster, Paul S.</au><au>Pagano, Richard E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonance Energy Transfer Microscopy: Observations of Membrane-Bound Fluorescent Probes in Model Membranes and in Living Cells</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>1986-10-01</date><risdate>1986</risdate><volume>103</volume><issue>4</issue><spage>1221</spage><epage>1234</epage><pages>1221-1234</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>A conventional fluorescence microscope was modified to observe the sites of resonance energy transfer (RET) between fluorescent probes in model membranes and in living cells. These modifications, and the parameters necessary to observe RET between membrane-bound fluorochromes, are detailed for a system that uses N-4-nitrobenzo-2-oxa-1,3-diazole (NBD) or fluorescein as the energy donor and sulforhodamine as the energy acceptor. The necessary parameters for RET in this system were first optimized using liposomes. Both quenching of the energy donor and sensitized fluorescence of the energy acceptor could be directly observed in the microscope. RET microscopy was then used in cultured fibroblasts to identify those intracellular organelles labeled by the lipid probe, N-SRh-decylamine (N- SRh- C10). This was done by observing the sites of RET in cells doubly labeled with N- SRh- C10 and an NBD-labeled lipid previously shown to label the endoplasmic reticulum, mitochondria, and nuclear envelope. RET microscopy was also used in cells treated with fluorescein-labeled Lens culinaris agglutinin and a sulforhodamine derivative of phosphatidylcholine to examine the internalization of plasma membrane lipid and protein probes. After internalization, the fluorescent lectin resided in most, but not all of the intracellular compartments labeled by the fluorescent lipid, suggesting sorting of the membrane-bound lectin into a subset of internal compartments. We conclude that RET microscopy can co-localize different membrane-bound components at high resolution, and may be particularly useful in examining temporal and spatial changes in the distribution of fluorescent molecules in membranes of the living cell.</abstract><cop>New York, NY</cop><pub>Rockefeller University Press</pub><pmid>3771633</pmid><doi>10.1083/jcb.103.4.1221</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9525
ispartof The Journal of cell biology, 1986-10, Vol.103 (4), p.1221-1234
issn 0021-9525
1540-8140
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2114341
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Biological and medical sciences
Cell Line
Cell Membrane - ultrastructure
Cell membranes
Cells
Cricetinae
Delta cells
Diverse techniques
Energy transfer
Fibroblasts
Fibroblasts - ultrastructure
Fluorescence
Fluorescent Dyes - analysis
fluorescent probes
Fundamental and applied biological sciences. Psychology
Kidney
Lectins
Lectins - analysis
Lipids
Liposomes
Membrane Lipids - analysis
Mesocricetus
Microscopy
Microscopy, Fluorescence - instrumentation
Microscopy, Fluorescence - methods
Molecular and cellular biology
Plant Lectins
title Resonance Energy Transfer Microscopy: Observations of Membrane-Bound Fluorescent Probes in Model Membranes and in Living Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A59%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonance%20Energy%20Transfer%20Microscopy:%20Observations%20of%20Membrane-Bound%20Fluorescent%20Probes%20in%20Model%20Membranes%20and%20in%20Living%20Cells&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Uster,%20Paul%20S.&rft.date=1986-10-01&rft.volume=103&rft.issue=4&rft.spage=1221&rft.epage=1234&rft.pages=1221-1234&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.103.4.1221&rft_dat=%3Cjstor_pubme%3E1612075%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14729211&rft_id=info:pmid/3771633&rft_jstor_id=1612075&rfr_iscdi=true