Enzymatic Basis for a Lectin-Resistant Phenotype: Increase in a Fucosyltransferase in Mouse Melanoma Cells

In the search for the biochemical basis of the control of glycosylation of cell surface carbohydrates, revertant clones were isolated from previously characterized wheat germ agglutinin-resistant clones of B16 mouse melanoma cells by selection for resistance to Lotus tetragonolobus lectin or to rici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of cell biology 1982-02, Vol.92 (2), p.277-282
Hauptverfasser: Finne, Jukka, Burger, Max M., J.-P. Prieels
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the search for the biochemical basis of the control of glycosylation of cell surface carbohydrates, revertant clones were isolated from previously characterized wheat germ agglutinin-resistant clones of B16 mouse melanoma cells by selection for resistance to Lotus tetragonolobus lectin or to ricin. Comparison of the wheat germ agglutinin-resistant clones with the parent and revertant clones indicated that this phenotype was correlated with an increased sensitivity to the Lotus lectin, a 60- to 70-fold increase in α1 → 3 fucosyltransferase activity and a decreased sialic acid content of the N-glycosidic chains of glycoproteins. The results suggest a novel type of control mechanism for lectin resistance, an increase in a glycosyltransferase activity. The presence of α1 → 3 bound fucose on N-acetylglucosamine residues would interfere with the addition of sialic acid by α2 → 3 linkages to galactose residues in the carbohydrate units, and this change could explain the resistance to wheat germ agglutinin and the increased sensitivity to the Lotus lectin. A change in a regulatory gene for the fucosyltransferase as a possible primary cause for the changed phenotype is discussed.
ISSN:0021-9525
1540-8140
DOI:10.1083/jcb.92.2.277