Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture
Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and pr...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2007-10, Vol.35 (19), p.6439-6450 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6450 |
---|---|
container_issue | 19 |
container_start_page | 6439 |
container_title | Nucleic acids research |
container_volume | 35 |
creator | Aspinall, Tanya V Gordon, James M.B Bennett, Hayley J Karahalios, Panagiotis Bukowski, John-Paul Walker, Scott C Engelke, David R Avis, Johanna M |
description | Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and protein-RNA interactions in vitro, complementing existing yeast two-hybrid data. In total, 31 direct protein-protein interactions were identified, each protein interacting with at least three others. Furthermore, seven proteins self-interact, four strongly, pointing to subunit multiplicity in the holoenzyme. Six protein subunits interact directly with MRP RNA and four with pre-rRNA. A comparative analysis with existing data for the yeast and human RNase P/MRP systems enables confident identification of Pop1p, Pop4p and Rpp1p as subunits that lie at the enzyme core, with probable addition of Pop5p and Pop3p. Rmp1p is confirmed as an integral subunit, presumably associating preferentially with RNase MRP, rather than RNase P, via interactions with Snm1p and MRP RNA. Snm1p and Rmp1p may act together to assist enzyme specificity, though roles in substrate binding are also indicated for Pop4p and Pop6p. The results provide further evidence of a conserved eukaryotic RNase P/MRP architecture and provide a strong basis for studies of enzyme assembly and subunit function. |
doi_str_mv | 10.1093/nar/gkm553 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2095792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkm553</oup_id><sourcerecordid>20373408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-899349758b682e718ca141ef05da6f51592821366b7ccba7c669733e913e5c6c3</originalsourceid><addsrcrecordid>eNqF0ctuEzEUBuARAtFQ2PAAYCHBAmmIPR7fNpVQBLRQoLRUQt1YHudM4iYzDrYnUPHyuJqoXBaw8sKffp1z_qJ4SPALghWd9iZMF6uOMXqrmBDKq7JWvLpdTDDFrCS4lnvFvRgvMSY1YfXdYo8IKQmVeFL8OOoTBGOT831EDaRvAD2KQzP0LkXkW3RmrF2a4LsrCxFZCLB10RlApx9MBPT-9CTzzcaHhAyyOQXCFuYIhpUJVz45u4Mn02tqgl26BDYNAe4Xd1qzjvBg9-4X569ffZ4dlscf3xzNXh6XlqkqlVIpWivBZMNlBYJIa_Ie0GI2N7xlJCNZ5bV5I6xtjLCcK0EpKEKBWW7pfnEw5m6GpoO5hT4Fs9ab4Lo8ovbG6T9_erfUC7_VFVZMqCoHPNsFBP91gJh056KF9dr04IeoucwHZ_n-_4MVpoLWWGb45C946YfQ5ytkgzkhtVQZPR-RDT7GAO3NyATr6-Z1bl6PzWf86Pclf9Fd1Rk8HYEfNv8OKkfnYoLvN9KEleaCCqYPv1xoId_N5MXbT7rO_vHoW-O1WQQX9flZhQnFWFZMsZr-BD2T0Mk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200611489</pqid></control><display><type>article</type><title>Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture</title><source>Oxford Journals Open Access Collection</source><creator>Aspinall, Tanya V ; Gordon, James M.B ; Bennett, Hayley J ; Karahalios, Panagiotis ; Bukowski, John-Paul ; Walker, Scott C ; Engelke, David R ; Avis, Johanna M</creator><creatorcontrib>Aspinall, Tanya V ; Gordon, James M.B ; Bennett, Hayley J ; Karahalios, Panagiotis ; Bukowski, John-Paul ; Walker, Scott C ; Engelke, David R ; Avis, Johanna M</creatorcontrib><description>Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and protein-RNA interactions in vitro, complementing existing yeast two-hybrid data. In total, 31 direct protein-protein interactions were identified, each protein interacting with at least three others. Furthermore, seven proteins self-interact, four strongly, pointing to subunit multiplicity in the holoenzyme. Six protein subunits interact directly with MRP RNA and four with pre-rRNA. A comparative analysis with existing data for the yeast and human RNase P/MRP systems enables confident identification of Pop1p, Pop4p and Rpp1p as subunits that lie at the enzyme core, with probable addition of Pop5p and Pop3p. Rmp1p is confirmed as an integral subunit, presumably associating preferentially with RNase MRP, rather than RNase P, via interactions with Snm1p and MRP RNA. Snm1p and Rmp1p may act together to assist enzyme specificity, though roles in substrate binding are also indicated for Pop4p and Pop6p. The results provide further evidence of a conserved eukaryotic RNase P/MRP architecture and provide a strong basis for studies of enzyme assembly and subunit function.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkm553</identifier><identifier>PMID: 17881380</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Endoribonucleases - isolation & purification ; Endoribonucleases - metabolism ; Humans ; Protein Interaction Mapping ; Protein Subunits - isolation & purification ; Ribonuclease P - metabolism ; Ribonucleoproteins - isolation & purification ; Ribonucleoproteins - metabolism ; RNA ; RNA Precursors - metabolism ; RNA, Fungal - metabolism ; RNA, Ribosomal - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae Proteins - isolation & purification ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>Nucleic acids research, 2007-10, Vol.35 (19), p.6439-6450</ispartof><rights>2007 The Author(s) 2007</rights><rights>2007 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-899349758b682e718ca141ef05da6f51592821366b7ccba7c669733e913e5c6c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2095792/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2095792/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/nar/gkm553$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17881380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aspinall, Tanya V</creatorcontrib><creatorcontrib>Gordon, James M.B</creatorcontrib><creatorcontrib>Bennett, Hayley J</creatorcontrib><creatorcontrib>Karahalios, Panagiotis</creatorcontrib><creatorcontrib>Bukowski, John-Paul</creatorcontrib><creatorcontrib>Walker, Scott C</creatorcontrib><creatorcontrib>Engelke, David R</creatorcontrib><creatorcontrib>Avis, Johanna M</creatorcontrib><title>Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and protein-RNA interactions in vitro, complementing existing yeast two-hybrid data. In total, 31 direct protein-protein interactions were identified, each protein interacting with at least three others. Furthermore, seven proteins self-interact, four strongly, pointing to subunit multiplicity in the holoenzyme. Six protein subunits interact directly with MRP RNA and four with pre-rRNA. A comparative analysis with existing data for the yeast and human RNase P/MRP systems enables confident identification of Pop1p, Pop4p and Rpp1p as subunits that lie at the enzyme core, with probable addition of Pop5p and Pop3p. Rmp1p is confirmed as an integral subunit, presumably associating preferentially with RNase MRP, rather than RNase P, via interactions with Snm1p and MRP RNA. Snm1p and Rmp1p may act together to assist enzyme specificity, though roles in substrate binding are also indicated for Pop4p and Pop6p. The results provide further evidence of a conserved eukaryotic RNase P/MRP architecture and provide a strong basis for studies of enzyme assembly and subunit function.</description><subject>Endoribonucleases - isolation & purification</subject><subject>Endoribonucleases - metabolism</subject><subject>Humans</subject><subject>Protein Interaction Mapping</subject><subject>Protein Subunits - isolation & purification</subject><subject>Ribonuclease P - metabolism</subject><subject>Ribonucleoproteins - isolation & purification</subject><subject>Ribonucleoproteins - metabolism</subject><subject>RNA</subject><subject>RNA Precursors - metabolism</subject><subject>RNA, Fungal - metabolism</subject><subject>RNA, Ribosomal - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae Proteins - isolation & purification</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0ctuEzEUBuARAtFQ2PAAYCHBAmmIPR7fNpVQBLRQoLRUQt1YHudM4iYzDrYnUPHyuJqoXBaw8sKffp1z_qJ4SPALghWd9iZMF6uOMXqrmBDKq7JWvLpdTDDFrCS4lnvFvRgvMSY1YfXdYo8IKQmVeFL8OOoTBGOT831EDaRvAD2KQzP0LkXkW3RmrF2a4LsrCxFZCLB10RlApx9MBPT-9CTzzcaHhAyyOQXCFuYIhpUJVz45u4Mn02tqgl26BDYNAe4Xd1qzjvBg9-4X569ffZ4dlscf3xzNXh6XlqkqlVIpWivBZMNlBYJIa_Ie0GI2N7xlJCNZ5bV5I6xtjLCcK0EpKEKBWW7pfnEw5m6GpoO5hT4Fs9ab4Lo8ovbG6T9_erfUC7_VFVZMqCoHPNsFBP91gJh056KF9dr04IeoucwHZ_n-_4MVpoLWWGb45C946YfQ5ytkgzkhtVQZPR-RDT7GAO3NyATr6-Z1bl6PzWf86Pclf9Fd1Rk8HYEfNv8OKkfnYoLvN9KEleaCCqYPv1xoId_N5MXbT7rO_vHoW-O1WQQX9flZhQnFWFZMsZr-BD2T0Mk</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Aspinall, Tanya V</creator><creator>Gordon, James M.B</creator><creator>Bennett, Hayley J</creator><creator>Karahalios, Panagiotis</creator><creator>Bukowski, John-Paul</creator><creator>Walker, Scott C</creator><creator>Engelke, David R</creator><creator>Avis, Johanna M</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20071001</creationdate><title>Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture</title><author>Aspinall, Tanya V ; Gordon, James M.B ; Bennett, Hayley J ; Karahalios, Panagiotis ; Bukowski, John-Paul ; Walker, Scott C ; Engelke, David R ; Avis, Johanna M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-899349758b682e718ca141ef05da6f51592821366b7ccba7c669733e913e5c6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Endoribonucleases - isolation & purification</topic><topic>Endoribonucleases - metabolism</topic><topic>Humans</topic><topic>Protein Interaction Mapping</topic><topic>Protein Subunits - isolation & purification</topic><topic>Ribonuclease P - metabolism</topic><topic>Ribonucleoproteins - isolation & purification</topic><topic>Ribonucleoproteins - metabolism</topic><topic>RNA</topic><topic>RNA Precursors - metabolism</topic><topic>RNA, Fungal - metabolism</topic><topic>RNA, Ribosomal - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae Proteins - isolation & purification</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aspinall, Tanya V</creatorcontrib><creatorcontrib>Gordon, James M.B</creatorcontrib><creatorcontrib>Bennett, Hayley J</creatorcontrib><creatorcontrib>Karahalios, Panagiotis</creatorcontrib><creatorcontrib>Bukowski, John-Paul</creatorcontrib><creatorcontrib>Walker, Scott C</creatorcontrib><creatorcontrib>Engelke, David R</creatorcontrib><creatorcontrib>Avis, Johanna M</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aspinall, Tanya V</au><au>Gordon, James M.B</au><au>Bennett, Hayley J</au><au>Karahalios, Panagiotis</au><au>Bukowski, John-Paul</au><au>Walker, Scott C</au><au>Engelke, David R</au><au>Avis, Johanna M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2007-10-01</date><risdate>2007</risdate><volume>35</volume><issue>19</issue><spage>6439</spage><epage>6450</epage><pages>6439-6450</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and protein-RNA interactions in vitro, complementing existing yeast two-hybrid data. In total, 31 direct protein-protein interactions were identified, each protein interacting with at least three others. Furthermore, seven proteins self-interact, four strongly, pointing to subunit multiplicity in the holoenzyme. Six protein subunits interact directly with MRP RNA and four with pre-rRNA. A comparative analysis with existing data for the yeast and human RNase P/MRP systems enables confident identification of Pop1p, Pop4p and Rpp1p as subunits that lie at the enzyme core, with probable addition of Pop5p and Pop3p. Rmp1p is confirmed as an integral subunit, presumably associating preferentially with RNase MRP, rather than RNase P, via interactions with Snm1p and MRP RNA. Snm1p and Rmp1p may act together to assist enzyme specificity, though roles in substrate binding are also indicated for Pop4p and Pop6p. The results provide further evidence of a conserved eukaryotic RNase P/MRP architecture and provide a strong basis for studies of enzyme assembly and subunit function.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>17881380</pmid><doi>10.1093/nar/gkm553</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2007-10, Vol.35 (19), p.6439-6450 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2095792 |
source | Oxford Journals Open Access Collection |
subjects | Endoribonucleases - isolation & purification Endoribonucleases - metabolism Humans Protein Interaction Mapping Protein Subunits - isolation & purification Ribonuclease P - metabolism Ribonucleoproteins - isolation & purification Ribonucleoproteins - metabolism RNA RNA Precursors - metabolism RNA, Fungal - metabolism RNA, Ribosomal - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae Proteins - isolation & purification Saccharomyces cerevisiae Proteins - metabolism |
title | Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactions%20between%20subunits%20of%20Saccharomyces%20cerevisiae%20RNase%20MRP%20support%20a%20conserved%20eukaryotic%20RNase%20P/MRP%20architecture&rft.jtitle=Nucleic%20acids%20research&rft.au=Aspinall,%20Tanya%20V&rft.date=2007-10-01&rft.volume=35&rft.issue=19&rft.spage=6439&rft.epage=6450&rft.pages=6439-6450&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkm553&rft_dat=%3Cproquest_TOX%3E20373408%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200611489&rft_id=info:pmid/17881380&rft_oup_id=10.1093/nar/gkm553&rfr_iscdi=true |