Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture

Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2007-10, Vol.35 (19), p.6439-6450
Hauptverfasser: Aspinall, Tanya V, Gordon, James M.B, Bennett, Hayley J, Karahalios, Panagiotis, Bukowski, John-Paul, Walker, Scott C, Engelke, David R, Avis, Johanna M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6450
container_issue 19
container_start_page 6439
container_title Nucleic acids research
container_volume 35
creator Aspinall, Tanya V
Gordon, James M.B
Bennett, Hayley J
Karahalios, Panagiotis
Bukowski, John-Paul
Walker, Scott C
Engelke, David R
Avis, Johanna M
description Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and protein-RNA interactions in vitro, complementing existing yeast two-hybrid data. In total, 31 direct protein-protein interactions were identified, each protein interacting with at least three others. Furthermore, seven proteins self-interact, four strongly, pointing to subunit multiplicity in the holoenzyme. Six protein subunits interact directly with MRP RNA and four with pre-rRNA. A comparative analysis with existing data for the yeast and human RNase P/MRP systems enables confident identification of Pop1p, Pop4p and Rpp1p as subunits that lie at the enzyme core, with probable addition of Pop5p and Pop3p. Rmp1p is confirmed as an integral subunit, presumably associating preferentially with RNase MRP, rather than RNase P, via interactions with Snm1p and MRP RNA. Snm1p and Rmp1p may act together to assist enzyme specificity, though roles in substrate binding are also indicated for Pop4p and Pop6p. The results provide further evidence of a conserved eukaryotic RNase P/MRP architecture and provide a strong basis for studies of enzyme assembly and subunit function.
doi_str_mv 10.1093/nar/gkm553
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2095792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkm553</oup_id><sourcerecordid>20373408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-899349758b682e718ca141ef05da6f51592821366b7ccba7c669733e913e5c6c3</originalsourceid><addsrcrecordid>eNqF0ctuEzEUBuARAtFQ2PAAYCHBAmmIPR7fNpVQBLRQoLRUQt1YHudM4iYzDrYnUPHyuJqoXBaw8sKffp1z_qJ4SPALghWd9iZMF6uOMXqrmBDKq7JWvLpdTDDFrCS4lnvFvRgvMSY1YfXdYo8IKQmVeFL8OOoTBGOT831EDaRvAD2KQzP0LkXkW3RmrF2a4LsrCxFZCLB10RlApx9MBPT-9CTzzcaHhAyyOQXCFuYIhpUJVz45u4Mn02tqgl26BDYNAe4Xd1qzjvBg9-4X569ffZ4dlscf3xzNXh6XlqkqlVIpWivBZMNlBYJIa_Ie0GI2N7xlJCNZ5bV5I6xtjLCcK0EpKEKBWW7pfnEw5m6GpoO5hT4Fs9ab4Lo8ovbG6T9_erfUC7_VFVZMqCoHPNsFBP91gJh056KF9dr04IeoucwHZ_n-_4MVpoLWWGb45C946YfQ5ytkgzkhtVQZPR-RDT7GAO3NyATr6-Z1bl6PzWf86Pclf9Fd1Rk8HYEfNv8OKkfnYoLvN9KEleaCCqYPv1xoId_N5MXbT7rO_vHoW-O1WQQX9flZhQnFWFZMsZr-BD2T0Mk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200611489</pqid></control><display><type>article</type><title>Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture</title><source>Oxford Journals Open Access Collection</source><creator>Aspinall, Tanya V ; Gordon, James M.B ; Bennett, Hayley J ; Karahalios, Panagiotis ; Bukowski, John-Paul ; Walker, Scott C ; Engelke, David R ; Avis, Johanna M</creator><creatorcontrib>Aspinall, Tanya V ; Gordon, James M.B ; Bennett, Hayley J ; Karahalios, Panagiotis ; Bukowski, John-Paul ; Walker, Scott C ; Engelke, David R ; Avis, Johanna M</creatorcontrib><description>Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and protein-RNA interactions in vitro, complementing existing yeast two-hybrid data. In total, 31 direct protein-protein interactions were identified, each protein interacting with at least three others. Furthermore, seven proteins self-interact, four strongly, pointing to subunit multiplicity in the holoenzyme. Six protein subunits interact directly with MRP RNA and four with pre-rRNA. A comparative analysis with existing data for the yeast and human RNase P/MRP systems enables confident identification of Pop1p, Pop4p and Rpp1p as subunits that lie at the enzyme core, with probable addition of Pop5p and Pop3p. Rmp1p is confirmed as an integral subunit, presumably associating preferentially with RNase MRP, rather than RNase P, via interactions with Snm1p and MRP RNA. Snm1p and Rmp1p may act together to assist enzyme specificity, though roles in substrate binding are also indicated for Pop4p and Pop6p. The results provide further evidence of a conserved eukaryotic RNase P/MRP architecture and provide a strong basis for studies of enzyme assembly and subunit function.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkm553</identifier><identifier>PMID: 17881380</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Endoribonucleases - isolation &amp; purification ; Endoribonucleases - metabolism ; Humans ; Protein Interaction Mapping ; Protein Subunits - isolation &amp; purification ; Ribonuclease P - metabolism ; Ribonucleoproteins - isolation &amp; purification ; Ribonucleoproteins - metabolism ; RNA ; RNA Precursors - metabolism ; RNA, Fungal - metabolism ; RNA, Ribosomal - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae Proteins - isolation &amp; purification ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>Nucleic acids research, 2007-10, Vol.35 (19), p.6439-6450</ispartof><rights>2007 The Author(s) 2007</rights><rights>2007 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-899349758b682e718ca141ef05da6f51592821366b7ccba7c669733e913e5c6c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2095792/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2095792/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/nar/gkm553$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17881380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aspinall, Tanya V</creatorcontrib><creatorcontrib>Gordon, James M.B</creatorcontrib><creatorcontrib>Bennett, Hayley J</creatorcontrib><creatorcontrib>Karahalios, Panagiotis</creatorcontrib><creatorcontrib>Bukowski, John-Paul</creatorcontrib><creatorcontrib>Walker, Scott C</creatorcontrib><creatorcontrib>Engelke, David R</creatorcontrib><creatorcontrib>Avis, Johanna M</creatorcontrib><title>Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and protein-RNA interactions in vitro, complementing existing yeast two-hybrid data. In total, 31 direct protein-protein interactions were identified, each protein interacting with at least three others. Furthermore, seven proteins self-interact, four strongly, pointing to subunit multiplicity in the holoenzyme. Six protein subunits interact directly with MRP RNA and four with pre-rRNA. A comparative analysis with existing data for the yeast and human RNase P/MRP systems enables confident identification of Pop1p, Pop4p and Rpp1p as subunits that lie at the enzyme core, with probable addition of Pop5p and Pop3p. Rmp1p is confirmed as an integral subunit, presumably associating preferentially with RNase MRP, rather than RNase P, via interactions with Snm1p and MRP RNA. Snm1p and Rmp1p may act together to assist enzyme specificity, though roles in substrate binding are also indicated for Pop4p and Pop6p. The results provide further evidence of a conserved eukaryotic RNase P/MRP architecture and provide a strong basis for studies of enzyme assembly and subunit function.</description><subject>Endoribonucleases - isolation &amp; purification</subject><subject>Endoribonucleases - metabolism</subject><subject>Humans</subject><subject>Protein Interaction Mapping</subject><subject>Protein Subunits - isolation &amp; purification</subject><subject>Ribonuclease P - metabolism</subject><subject>Ribonucleoproteins - isolation &amp; purification</subject><subject>Ribonucleoproteins - metabolism</subject><subject>RNA</subject><subject>RNA Precursors - metabolism</subject><subject>RNA, Fungal - metabolism</subject><subject>RNA, Ribosomal - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae Proteins - isolation &amp; purification</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0ctuEzEUBuARAtFQ2PAAYCHBAmmIPR7fNpVQBLRQoLRUQt1YHudM4iYzDrYnUPHyuJqoXBaw8sKffp1z_qJ4SPALghWd9iZMF6uOMXqrmBDKq7JWvLpdTDDFrCS4lnvFvRgvMSY1YfXdYo8IKQmVeFL8OOoTBGOT831EDaRvAD2KQzP0LkXkW3RmrF2a4LsrCxFZCLB10RlApx9MBPT-9CTzzcaHhAyyOQXCFuYIhpUJVz45u4Mn02tqgl26BDYNAe4Xd1qzjvBg9-4X569ffZ4dlscf3xzNXh6XlqkqlVIpWivBZMNlBYJIa_Ie0GI2N7xlJCNZ5bV5I6xtjLCcK0EpKEKBWW7pfnEw5m6GpoO5hT4Fs9ab4Lo8ovbG6T9_erfUC7_VFVZMqCoHPNsFBP91gJh056KF9dr04IeoucwHZ_n-_4MVpoLWWGb45C946YfQ5ytkgzkhtVQZPR-RDT7GAO3NyATr6-Z1bl6PzWf86Pclf9Fd1Rk8HYEfNv8OKkfnYoLvN9KEleaCCqYPv1xoId_N5MXbT7rO_vHoW-O1WQQX9flZhQnFWFZMsZr-BD2T0Mk</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Aspinall, Tanya V</creator><creator>Gordon, James M.B</creator><creator>Bennett, Hayley J</creator><creator>Karahalios, Panagiotis</creator><creator>Bukowski, John-Paul</creator><creator>Walker, Scott C</creator><creator>Engelke, David R</creator><creator>Avis, Johanna M</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20071001</creationdate><title>Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture</title><author>Aspinall, Tanya V ; Gordon, James M.B ; Bennett, Hayley J ; Karahalios, Panagiotis ; Bukowski, John-Paul ; Walker, Scott C ; Engelke, David R ; Avis, Johanna M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-899349758b682e718ca141ef05da6f51592821366b7ccba7c669733e913e5c6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Endoribonucleases - isolation &amp; purification</topic><topic>Endoribonucleases - metabolism</topic><topic>Humans</topic><topic>Protein Interaction Mapping</topic><topic>Protein Subunits - isolation &amp; purification</topic><topic>Ribonuclease P - metabolism</topic><topic>Ribonucleoproteins - isolation &amp; purification</topic><topic>Ribonucleoproteins - metabolism</topic><topic>RNA</topic><topic>RNA Precursors - metabolism</topic><topic>RNA, Fungal - metabolism</topic><topic>RNA, Ribosomal - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae Proteins - isolation &amp; purification</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aspinall, Tanya V</creatorcontrib><creatorcontrib>Gordon, James M.B</creatorcontrib><creatorcontrib>Bennett, Hayley J</creatorcontrib><creatorcontrib>Karahalios, Panagiotis</creatorcontrib><creatorcontrib>Bukowski, John-Paul</creatorcontrib><creatorcontrib>Walker, Scott C</creatorcontrib><creatorcontrib>Engelke, David R</creatorcontrib><creatorcontrib>Avis, Johanna M</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aspinall, Tanya V</au><au>Gordon, James M.B</au><au>Bennett, Hayley J</au><au>Karahalios, Panagiotis</au><au>Bukowski, John-Paul</au><au>Walker, Scott C</au><au>Engelke, David R</au><au>Avis, Johanna M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2007-10-01</date><risdate>2007</risdate><volume>35</volume><issue>19</issue><spage>6439</spage><epage>6450</epage><pages>6439-6450</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and protein-RNA interactions in vitro, complementing existing yeast two-hybrid data. In total, 31 direct protein-protein interactions were identified, each protein interacting with at least three others. Furthermore, seven proteins self-interact, four strongly, pointing to subunit multiplicity in the holoenzyme. Six protein subunits interact directly with MRP RNA and four with pre-rRNA. A comparative analysis with existing data for the yeast and human RNase P/MRP systems enables confident identification of Pop1p, Pop4p and Rpp1p as subunits that lie at the enzyme core, with probable addition of Pop5p and Pop3p. Rmp1p is confirmed as an integral subunit, presumably associating preferentially with RNase MRP, rather than RNase P, via interactions with Snm1p and MRP RNA. Snm1p and Rmp1p may act together to assist enzyme specificity, though roles in substrate binding are also indicated for Pop4p and Pop6p. The results provide further evidence of a conserved eukaryotic RNase P/MRP architecture and provide a strong basis for studies of enzyme assembly and subunit function.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>17881380</pmid><doi>10.1093/nar/gkm553</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2007-10, Vol.35 (19), p.6439-6450
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2095792
source Oxford Journals Open Access Collection
subjects Endoribonucleases - isolation & purification
Endoribonucleases - metabolism
Humans
Protein Interaction Mapping
Protein Subunits - isolation & purification
Ribonuclease P - metabolism
Ribonucleoproteins - isolation & purification
Ribonucleoproteins - metabolism
RNA
RNA Precursors - metabolism
RNA, Fungal - metabolism
RNA, Ribosomal - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae Proteins - isolation & purification
Saccharomyces cerevisiae Proteins - metabolism
title Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactions%20between%20subunits%20of%20Saccharomyces%20cerevisiae%20RNase%20MRP%20support%20a%20conserved%20eukaryotic%20RNase%20P/MRP%20architecture&rft.jtitle=Nucleic%20acids%20research&rft.au=Aspinall,%20Tanya%20V&rft.date=2007-10-01&rft.volume=35&rft.issue=19&rft.spage=6439&rft.epage=6450&rft.pages=6439-6450&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkm553&rft_dat=%3Cproquest_TOX%3E20373408%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200611489&rft_id=info:pmid/17881380&rft_oup_id=10.1093/nar/gkm553&rfr_iscdi=true