A Ligand-Based Approach To Identify Quantitative Structure−Activity Relationships for the Androgen Receptor

We examined the three-dimensional quantitative structure−activity relationship (QSAR) of a group of endogenous and synthetic compounds for the androgen receptor (AR) using comparative molecular field analysis (CoMFA). The goal of these studies was to identify structural features necessary for high b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2004-07, Vol.47 (15), p.3765-3776
Hauptverfasser: Bohl, Casey E., Chang, Cheng, Mohler, Michael L., Chen, Jiyun, Miller, Duane D., Swaan, Peter W., Dalton, James T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3776
container_issue 15
container_start_page 3765
container_title Journal of medicinal chemistry
container_volume 47
creator Bohl, Casey E.
Chang, Cheng
Mohler, Michael L.
Chen, Jiyun
Miller, Duane D.
Swaan, Peter W.
Dalton, James T.
description We examined the three-dimensional quantitative structure−activity relationship (QSAR) of a group of endogenous and synthetic compounds for the androgen receptor (AR) using comparative molecular field analysis (CoMFA). The goal of these studies was to identify structural features necessary for high binding affinity and optimization of selective androgen receptor modulators (SARMs). A homology model of the AR was used as a scaffold to align six lead compounds that served as templates for alignment of the remaining 116 structures prior to CoMFA modeling. The conventional r 2 and cross-validated q 2 relating observed and predicted relative binding affinity (RBA) were 0.949 and 0.593, respectively. Comparison of predicted and observed RBA for a test set of 10 compounds resulted in an r 2 of 0.954, demonstrating the excellent predictive ability of the model. These integrated homology modeling and CoMFA studies identified critical amino acids for SARM interactions and provided QSAR data as the basis for mechanistic studies of AR structure, function, and design of optimized SARMs.
doi_str_mv 10.1021/jm0499007
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2080780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66685441</sourcerecordid><originalsourceid>FETCH-LOGICAL-a535t-adebe9fd0d03ac94eecafa2ccf61154cf48c50b6e05aacb316765a620b1b811f3</originalsourceid><addsrcrecordid>eNptkc2O0zAUhSMEYjoDC14AZQMSi8C1HbvJBikzYmBE-W2R2Fk3jtO6JHGwnRF9A9Y8Ik-CUavOILG61j2fjo99kuQRgecEKHmx7SEvS4D5nWRGOIUsLyC_m8wAKM2ooOwkOfV-CwCMUHY_OYkQKwXns6Sv0oVZ49Bk5-h1k1bj6CyqTbqy6VWjh2DaXfppwngIGMy1TpfBTSpMTv_--atScWXCLv2su6jawW_M6NPWujRsdFoNjbNrPURZ6TFY9yC512Ln9cPDPEu-XL5aXbzJFh9eX11Uiww54yHDRte6bBtogKEqc60VtkiVagUhPFdtXigOtdDAEVXNiJgLjoJCTeqCkJadJS_3vuNU97pR8R0OOzk606PbSYtG_qsMZiPX9lpSKGBeQDR4ejBw9vukfZC98Up3HQ7aTl4KIQqe5ySCz_agctZ7p9vjJQTk33LksZzIPr6d6oY8tBGBJwcAvcKudTgo429xZQ5QiMhle874oH8cdXTfpJizOZerj0v5tmDk_dd3hVze-KLycmsnN8TP_0_AP8hPthY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66685441</pqid></control><display><type>article</type><title>A Ligand-Based Approach To Identify Quantitative Structure−Activity Relationships for the Androgen Receptor</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Bohl, Casey E. ; Chang, Cheng ; Mohler, Michael L. ; Chen, Jiyun ; Miller, Duane D. ; Swaan, Peter W. ; Dalton, James T.</creator><creatorcontrib>Bohl, Casey E. ; Chang, Cheng ; Mohler, Michael L. ; Chen, Jiyun ; Miller, Duane D. ; Swaan, Peter W. ; Dalton, James T.</creatorcontrib><description>We examined the three-dimensional quantitative structure−activity relationship (QSAR) of a group of endogenous and synthetic compounds for the androgen receptor (AR) using comparative molecular field analysis (CoMFA). The goal of these studies was to identify structural features necessary for high binding affinity and optimization of selective androgen receptor modulators (SARMs). A homology model of the AR was used as a scaffold to align six lead compounds that served as templates for alignment of the remaining 116 structures prior to CoMFA modeling. The conventional r 2 and cross-validated q 2 relating observed and predicted relative binding affinity (RBA) were 0.949 and 0.593, respectively. Comparison of predicted and observed RBA for a test set of 10 compounds resulted in an r 2 of 0.954, demonstrating the excellent predictive ability of the model. These integrated homology modeling and CoMFA studies identified critical amino acids for SARM interactions and provided QSAR data as the basis for mechanistic studies of AR structure, function, and design of optimized SARMs.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/jm0499007</identifier><identifier>PMID: 15239655</identifier><identifier>CODEN: JMCMAR</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Anilides - chemistry ; Biological and medical sciences ; Heterocyclic Compounds, 3-Ring - chemistry ; Hormones. Endocrine system ; Ligands ; Medical sciences ; Models, Molecular ; Molecular Conformation ; Molecular Structure ; Nitriles ; Pharmacology. Drug treatments ; Quantitative Structure-Activity Relationship ; Quinolines - chemistry ; Receptors, Androgen - chemistry ; Static Electricity ; Steroids - chemistry ; Tosyl Compounds</subject><ispartof>Journal of medicinal chemistry, 2004-07, Vol.47 (15), p.3765-3776</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a535t-adebe9fd0d03ac94eecafa2ccf61154cf48c50b6e05aacb316765a620b1b811f3</citedby><cites>FETCH-LOGICAL-a535t-adebe9fd0d03ac94eecafa2ccf61154cf48c50b6e05aacb316765a620b1b811f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jm0499007$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jm0499007$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15940086$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15239655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bohl, Casey E.</creatorcontrib><creatorcontrib>Chang, Cheng</creatorcontrib><creatorcontrib>Mohler, Michael L.</creatorcontrib><creatorcontrib>Chen, Jiyun</creatorcontrib><creatorcontrib>Miller, Duane D.</creatorcontrib><creatorcontrib>Swaan, Peter W.</creatorcontrib><creatorcontrib>Dalton, James T.</creatorcontrib><title>A Ligand-Based Approach To Identify Quantitative Structure−Activity Relationships for the Androgen Receptor</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>We examined the three-dimensional quantitative structure−activity relationship (QSAR) of a group of endogenous and synthetic compounds for the androgen receptor (AR) using comparative molecular field analysis (CoMFA). The goal of these studies was to identify structural features necessary for high binding affinity and optimization of selective androgen receptor modulators (SARMs). A homology model of the AR was used as a scaffold to align six lead compounds that served as templates for alignment of the remaining 116 structures prior to CoMFA modeling. The conventional r 2 and cross-validated q 2 relating observed and predicted relative binding affinity (RBA) were 0.949 and 0.593, respectively. Comparison of predicted and observed RBA for a test set of 10 compounds resulted in an r 2 of 0.954, demonstrating the excellent predictive ability of the model. These integrated homology modeling and CoMFA studies identified critical amino acids for SARM interactions and provided QSAR data as the basis for mechanistic studies of AR structure, function, and design of optimized SARMs.</description><subject>Anilides - chemistry</subject><subject>Biological and medical sciences</subject><subject>Heterocyclic Compounds, 3-Ring - chemistry</subject><subject>Hormones. Endocrine system</subject><subject>Ligands</subject><subject>Medical sciences</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Molecular Structure</subject><subject>Nitriles</subject><subject>Pharmacology. Drug treatments</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Quinolines - chemistry</subject><subject>Receptors, Androgen - chemistry</subject><subject>Static Electricity</subject><subject>Steroids - chemistry</subject><subject>Tosyl Compounds</subject><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc2O0zAUhSMEYjoDC14AZQMSi8C1HbvJBikzYmBE-W2R2Fk3jtO6JHGwnRF9A9Y8Ik-CUavOILG61j2fjo99kuQRgecEKHmx7SEvS4D5nWRGOIUsLyC_m8wAKM2ooOwkOfV-CwCMUHY_OYkQKwXns6Sv0oVZ49Bk5-h1k1bj6CyqTbqy6VWjh2DaXfppwngIGMy1TpfBTSpMTv_--atScWXCLv2su6jawW_M6NPWujRsdFoNjbNrPURZ6TFY9yC512Ln9cPDPEu-XL5aXbzJFh9eX11Uiww54yHDRte6bBtogKEqc60VtkiVagUhPFdtXigOtdDAEVXNiJgLjoJCTeqCkJadJS_3vuNU97pR8R0OOzk606PbSYtG_qsMZiPX9lpSKGBeQDR4ejBw9vukfZC98Up3HQ7aTl4KIQqe5ySCz_agctZ7p9vjJQTk33LksZzIPr6d6oY8tBGBJwcAvcKudTgo429xZQ5QiMhle874oH8cdXTfpJizOZerj0v5tmDk_dd3hVze-KLycmsnN8TP_0_AP8hPthY</recordid><startdate>20040715</startdate><enddate>20040715</enddate><creator>Bohl, Casey E.</creator><creator>Chang, Cheng</creator><creator>Mohler, Michael L.</creator><creator>Chen, Jiyun</creator><creator>Miller, Duane D.</creator><creator>Swaan, Peter W.</creator><creator>Dalton, James T.</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040715</creationdate><title>A Ligand-Based Approach To Identify Quantitative Structure−Activity Relationships for the Androgen Receptor</title><author>Bohl, Casey E. ; Chang, Cheng ; Mohler, Michael L. ; Chen, Jiyun ; Miller, Duane D. ; Swaan, Peter W. ; Dalton, James T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a535t-adebe9fd0d03ac94eecafa2ccf61154cf48c50b6e05aacb316765a620b1b811f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Anilides - chemistry</topic><topic>Biological and medical sciences</topic><topic>Heterocyclic Compounds, 3-Ring - chemistry</topic><topic>Hormones. Endocrine system</topic><topic>Ligands</topic><topic>Medical sciences</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Molecular Structure</topic><topic>Nitriles</topic><topic>Pharmacology. Drug treatments</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Quinolines - chemistry</topic><topic>Receptors, Androgen - chemistry</topic><topic>Static Electricity</topic><topic>Steroids - chemistry</topic><topic>Tosyl Compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bohl, Casey E.</creatorcontrib><creatorcontrib>Chang, Cheng</creatorcontrib><creatorcontrib>Mohler, Michael L.</creatorcontrib><creatorcontrib>Chen, Jiyun</creatorcontrib><creatorcontrib>Miller, Duane D.</creatorcontrib><creatorcontrib>Swaan, Peter W.</creatorcontrib><creatorcontrib>Dalton, James T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bohl, Casey E.</au><au>Chang, Cheng</au><au>Mohler, Michael L.</au><au>Chen, Jiyun</au><au>Miller, Duane D.</au><au>Swaan, Peter W.</au><au>Dalton, James T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Ligand-Based Approach To Identify Quantitative Structure−Activity Relationships for the Androgen Receptor</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>2004-07-15</date><risdate>2004</risdate><volume>47</volume><issue>15</issue><spage>3765</spage><epage>3776</epage><pages>3765-3776</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><coden>JMCMAR</coden><abstract>We examined the three-dimensional quantitative structure−activity relationship (QSAR) of a group of endogenous and synthetic compounds for the androgen receptor (AR) using comparative molecular field analysis (CoMFA). The goal of these studies was to identify structural features necessary for high binding affinity and optimization of selective androgen receptor modulators (SARMs). A homology model of the AR was used as a scaffold to align six lead compounds that served as templates for alignment of the remaining 116 structures prior to CoMFA modeling. The conventional r 2 and cross-validated q 2 relating observed and predicted relative binding affinity (RBA) were 0.949 and 0.593, respectively. Comparison of predicted and observed RBA for a test set of 10 compounds resulted in an r 2 of 0.954, demonstrating the excellent predictive ability of the model. These integrated homology modeling and CoMFA studies identified critical amino acids for SARM interactions and provided QSAR data as the basis for mechanistic studies of AR structure, function, and design of optimized SARMs.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>15239655</pmid><doi>10.1021/jm0499007</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2623
ispartof Journal of medicinal chemistry, 2004-07, Vol.47 (15), p.3765-3776
issn 0022-2623
1520-4804
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2080780
source MEDLINE; American Chemical Society Journals
subjects Anilides - chemistry
Biological and medical sciences
Heterocyclic Compounds, 3-Ring - chemistry
Hormones. Endocrine system
Ligands
Medical sciences
Models, Molecular
Molecular Conformation
Molecular Structure
Nitriles
Pharmacology. Drug treatments
Quantitative Structure-Activity Relationship
Quinolines - chemistry
Receptors, Androgen - chemistry
Static Electricity
Steroids - chemistry
Tosyl Compounds
title A Ligand-Based Approach To Identify Quantitative Structure−Activity Relationships for the Androgen Receptor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Ligand-Based%20Approach%20To%20Identify%20Quantitative%20Structure%E2%88%92Activity%20Relationships%20for%20the%20Androgen%20Receptor&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Bohl,%20Casey%20E.&rft.date=2004-07-15&rft.volume=47&rft.issue=15&rft.spage=3765&rft.epage=3776&rft.pages=3765-3776&rft.issn=0022-2623&rft.eissn=1520-4804&rft.coden=JMCMAR&rft_id=info:doi/10.1021/jm0499007&rft_dat=%3Cproquest_pubme%3E66685441%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66685441&rft_id=info:pmid/15239655&rfr_iscdi=true