In vitro dimerization of human immunodeficiency virus type 1 (HIV-1) spliced RNAs

The human immunodeficiency virus type 1 (HIV-1) packages its genomic RNA as a dimer of homologous RNA molecules that has to be selected among a multitude of cellular and viral RNAs. Interestingly, spliced viral mRNAs are packaged into viral particles with a relatively low efficiency despite the fact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RNA (Cambridge) 2007-12, Vol.13 (12), p.2141-2150
Hauptverfasser: Sinck, Lucile, Richer, Delphine, Howard, Jane, Alexander, Marina, Purcell, Damian F J, Marquet, Roland, Paillart, Jean-Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2150
container_issue 12
container_start_page 2141
container_title RNA (Cambridge)
container_volume 13
creator Sinck, Lucile
Richer, Delphine
Howard, Jane
Alexander, Marina
Purcell, Damian F J
Marquet, Roland
Paillart, Jean-Christophe
description The human immunodeficiency virus type 1 (HIV-1) packages its genomic RNA as a dimer of homologous RNA molecules that has to be selected among a multitude of cellular and viral RNAs. Interestingly, spliced viral mRNAs are packaged into viral particles with a relatively low efficiency despite the fact that they contain most of the extended packaging signal found in the 5' untranslated region of the genomic RNA, including the dimerization initiation site (DIS). As a consequence, HIV-1 spliced viral RNAs can theoretically homodimerize and heterodimerize with the genomic RNA, and thus they should directly compete with genomic RNA for packaging. To shed light on this issue, we investigated for the first time the in vitro dimerization properties of spliced HIV-1 RNAs. We found that singly spliced (env, vpr) and multispliced (tat, rev, and nef) RNA fragments are able to dimerize in vitro, and to efficiently form heterodimers with genomic RNA. Chemical probing experiments and inhibition of RNA dimerization by an antisense oligonucleotide directed against the DIS indicated that the DIS is structurally functional in spliced HIV-1 RNA, and that RNA dimerization occurs through a loop-loop interaction. In addition, by combining in vitro transcription and dimerization assays, we show that heterodimers can be efficiently formed only when the two RNA fragments are synthesized simultaneously, in the same environment. Together, our results support a model in which RNA dimerization would occur during transcription in the nucleus and could thus play a major role in splicing, transport, and localization of HIV-1 RNA.
doi_str_mv 10.1261/rna.678307
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2080610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68511121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-90bbc50a529dd543ed449b87b8b17649ffe586c90f1a8c1c2b402871f74f1da43</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhhtR3A-9-AMkJ3GFXlP56vRFGBbXGRgURb2GdDpxIt3JbNI9MP76zTLDru7FUxVVT71VxVtVrwBfAhHwPgV9KRpJcfOkOgUm2rrFGJ6WnHJeSyrJSXWW8-9SpKX9vDqBpiWcMnZafV0FtPNTiqj3o03-j558DCg6tJlHHZAfxznE3jpvvA1mX-A0ZzTttxYBertc_azhAuXt4I3t0bfPi_yieub0kO3LYzyvflx__H61rNdfPq2uFuvacNxM5cSuK5nmpO17zqjtGWs72XSyg0aw1jnLpTAtdqClAUM6holswDXMQa8ZPa8-HHS3czfa3tgwJT2obfKjTnsVtVf_doLfqF9xpwiWWAAuAhcHgc2jseVire5qGBOMJRc7KOyb47IUb2abJzX6bOww6GDjnJWQHADI_0GCKWFM0AK-O4AmxZyTdfcnAFZ3tqpiqzrYWuDXf__6gB59pLeF1pyV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20324463</pqid></control><display><type>article</type><title>In vitro dimerization of human immunodeficiency virus type 1 (HIV-1) spliced RNAs</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sinck, Lucile ; Richer, Delphine ; Howard, Jane ; Alexander, Marina ; Purcell, Damian F J ; Marquet, Roland ; Paillart, Jean-Christophe</creator><creatorcontrib>Sinck, Lucile ; Richer, Delphine ; Howard, Jane ; Alexander, Marina ; Purcell, Damian F J ; Marquet, Roland ; Paillart, Jean-Christophe</creatorcontrib><description>The human immunodeficiency virus type 1 (HIV-1) packages its genomic RNA as a dimer of homologous RNA molecules that has to be selected among a multitude of cellular and viral RNAs. Interestingly, spliced viral mRNAs are packaged into viral particles with a relatively low efficiency despite the fact that they contain most of the extended packaging signal found in the 5' untranslated region of the genomic RNA, including the dimerization initiation site (DIS). As a consequence, HIV-1 spliced viral RNAs can theoretically homodimerize and heterodimerize with the genomic RNA, and thus they should directly compete with genomic RNA for packaging. To shed light on this issue, we investigated for the first time the in vitro dimerization properties of spliced HIV-1 RNAs. We found that singly spliced (env, vpr) and multispliced (tat, rev, and nef) RNA fragments are able to dimerize in vitro, and to efficiently form heterodimers with genomic RNA. Chemical probing experiments and inhibition of RNA dimerization by an antisense oligonucleotide directed against the DIS indicated that the DIS is structurally functional in spliced HIV-1 RNA, and that RNA dimerization occurs through a loop-loop interaction. In addition, by combining in vitro transcription and dimerization assays, we show that heterodimers can be efficiently formed only when the two RNA fragments are synthesized simultaneously, in the same environment. Together, our results support a model in which RNA dimerization would occur during transcription in the nucleus and could thus play a major role in splicing, transport, and localization of HIV-1 RNA.</description><identifier>ISSN: 1355-8382</identifier><identifier>EISSN: 1469-9001</identifier><identifier>DOI: 10.1261/rna.678307</identifier><identifier>PMID: 17925344</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Cellular Biology ; Dimerization ; Drug Stability ; Genes, env ; Genes, nef ; Genes, tat ; Genes, Viral ; HIV-1 - genetics ; Human immunodeficiency virus 1 ; Humans ; Life Sciences ; RNA Splicing ; RNA, Messenger - genetics ; RNA, Viral - genetics</subject><ispartof>RNA (Cambridge), 2007-12, Vol.13 (12), p.2141-2150</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2007 RNA Society 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-90bbc50a529dd543ed449b87b8b17649ffe586c90f1a8c1c2b402871f74f1da43</citedby><cites>FETCH-LOGICAL-c507t-90bbc50a529dd543ed449b87b8b17649ffe586c90f1a8c1c2b402871f74f1da43</cites><orcidid>0000-0003-1647-8917 ; 0000-0002-4209-3976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080610/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080610/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17925344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00200856$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sinck, Lucile</creatorcontrib><creatorcontrib>Richer, Delphine</creatorcontrib><creatorcontrib>Howard, Jane</creatorcontrib><creatorcontrib>Alexander, Marina</creatorcontrib><creatorcontrib>Purcell, Damian F J</creatorcontrib><creatorcontrib>Marquet, Roland</creatorcontrib><creatorcontrib>Paillart, Jean-Christophe</creatorcontrib><title>In vitro dimerization of human immunodeficiency virus type 1 (HIV-1) spliced RNAs</title><title>RNA (Cambridge)</title><addtitle>RNA</addtitle><description>The human immunodeficiency virus type 1 (HIV-1) packages its genomic RNA as a dimer of homologous RNA molecules that has to be selected among a multitude of cellular and viral RNAs. Interestingly, spliced viral mRNAs are packaged into viral particles with a relatively low efficiency despite the fact that they contain most of the extended packaging signal found in the 5' untranslated region of the genomic RNA, including the dimerization initiation site (DIS). As a consequence, HIV-1 spliced viral RNAs can theoretically homodimerize and heterodimerize with the genomic RNA, and thus they should directly compete with genomic RNA for packaging. To shed light on this issue, we investigated for the first time the in vitro dimerization properties of spliced HIV-1 RNAs. We found that singly spliced (env, vpr) and multispliced (tat, rev, and nef) RNA fragments are able to dimerize in vitro, and to efficiently form heterodimers with genomic RNA. Chemical probing experiments and inhibition of RNA dimerization by an antisense oligonucleotide directed against the DIS indicated that the DIS is structurally functional in spliced HIV-1 RNA, and that RNA dimerization occurs through a loop-loop interaction. In addition, by combining in vitro transcription and dimerization assays, we show that heterodimers can be efficiently formed only when the two RNA fragments are synthesized simultaneously, in the same environment. Together, our results support a model in which RNA dimerization would occur during transcription in the nucleus and could thus play a major role in splicing, transport, and localization of HIV-1 RNA.</description><subject>Cellular Biology</subject><subject>Dimerization</subject><subject>Drug Stability</subject><subject>Genes, env</subject><subject>Genes, nef</subject><subject>Genes, tat</subject><subject>Genes, Viral</subject><subject>HIV-1 - genetics</subject><subject>Human immunodeficiency virus 1</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>RNA Splicing</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Viral - genetics</subject><issn>1355-8382</issn><issn>1469-9001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2LFDEQhhtR3A-9-AMkJ3GFXlP56vRFGBbXGRgURb2GdDpxIt3JbNI9MP76zTLDru7FUxVVT71VxVtVrwBfAhHwPgV9KRpJcfOkOgUm2rrFGJ6WnHJeSyrJSXWW8-9SpKX9vDqBpiWcMnZafV0FtPNTiqj3o03-j558DCg6tJlHHZAfxznE3jpvvA1mX-A0ZzTttxYBertc_azhAuXt4I3t0bfPi_yieub0kO3LYzyvflx__H61rNdfPq2uFuvacNxM5cSuK5nmpO17zqjtGWs72XSyg0aw1jnLpTAtdqClAUM6holswDXMQa8ZPa8-HHS3czfa3tgwJT2obfKjTnsVtVf_doLfqF9xpwiWWAAuAhcHgc2jseVire5qGBOMJRc7KOyb47IUb2abJzX6bOww6GDjnJWQHADI_0GCKWFM0AK-O4AmxZyTdfcnAFZ3tqpiqzrYWuDXf__6gB59pLeF1pyV</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Sinck, Lucile</creator><creator>Richer, Delphine</creator><creator>Howard, Jane</creator><creator>Alexander, Marina</creator><creator>Purcell, Damian F J</creator><creator>Marquet, Roland</creator><creator>Paillart, Jean-Christophe</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7U9</scope><scope>H94</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1647-8917</orcidid><orcidid>https://orcid.org/0000-0002-4209-3976</orcidid></search><sort><creationdate>20071201</creationdate><title>In vitro dimerization of human immunodeficiency virus type 1 (HIV-1) spliced RNAs</title><author>Sinck, Lucile ; Richer, Delphine ; Howard, Jane ; Alexander, Marina ; Purcell, Damian F J ; Marquet, Roland ; Paillart, Jean-Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-90bbc50a529dd543ed449b87b8b17649ffe586c90f1a8c1c2b402871f74f1da43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Cellular Biology</topic><topic>Dimerization</topic><topic>Drug Stability</topic><topic>Genes, env</topic><topic>Genes, nef</topic><topic>Genes, tat</topic><topic>Genes, Viral</topic><topic>HIV-1 - genetics</topic><topic>Human immunodeficiency virus 1</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>RNA Splicing</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Viral - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinck, Lucile</creatorcontrib><creatorcontrib>Richer, Delphine</creatorcontrib><creatorcontrib>Howard, Jane</creatorcontrib><creatorcontrib>Alexander, Marina</creatorcontrib><creatorcontrib>Purcell, Damian F J</creatorcontrib><creatorcontrib>Marquet, Roland</creatorcontrib><creatorcontrib>Paillart, Jean-Christophe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RNA (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinck, Lucile</au><au>Richer, Delphine</au><au>Howard, Jane</au><au>Alexander, Marina</au><au>Purcell, Damian F J</au><au>Marquet, Roland</au><au>Paillart, Jean-Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro dimerization of human immunodeficiency virus type 1 (HIV-1) spliced RNAs</atitle><jtitle>RNA (Cambridge)</jtitle><addtitle>RNA</addtitle><date>2007-12-01</date><risdate>2007</risdate><volume>13</volume><issue>12</issue><spage>2141</spage><epage>2150</epage><pages>2141-2150</pages><issn>1355-8382</issn><eissn>1469-9001</eissn><abstract>The human immunodeficiency virus type 1 (HIV-1) packages its genomic RNA as a dimer of homologous RNA molecules that has to be selected among a multitude of cellular and viral RNAs. Interestingly, spliced viral mRNAs are packaged into viral particles with a relatively low efficiency despite the fact that they contain most of the extended packaging signal found in the 5' untranslated region of the genomic RNA, including the dimerization initiation site (DIS). As a consequence, HIV-1 spliced viral RNAs can theoretically homodimerize and heterodimerize with the genomic RNA, and thus they should directly compete with genomic RNA for packaging. To shed light on this issue, we investigated for the first time the in vitro dimerization properties of spliced HIV-1 RNAs. We found that singly spliced (env, vpr) and multispliced (tat, rev, and nef) RNA fragments are able to dimerize in vitro, and to efficiently form heterodimers with genomic RNA. Chemical probing experiments and inhibition of RNA dimerization by an antisense oligonucleotide directed against the DIS indicated that the DIS is structurally functional in spliced HIV-1 RNA, and that RNA dimerization occurs through a loop-loop interaction. In addition, by combining in vitro transcription and dimerization assays, we show that heterodimers can be efficiently formed only when the two RNA fragments are synthesized simultaneously, in the same environment. Together, our results support a model in which RNA dimerization would occur during transcription in the nucleus and could thus play a major role in splicing, transport, and localization of HIV-1 RNA.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>17925344</pmid><doi>10.1261/rna.678307</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1647-8917</orcidid><orcidid>https://orcid.org/0000-0002-4209-3976</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1355-8382
ispartof RNA (Cambridge), 2007-12, Vol.13 (12), p.2141-2150
issn 1355-8382
1469-9001
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2080610
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Cellular Biology
Dimerization
Drug Stability
Genes, env
Genes, nef
Genes, tat
Genes, Viral
HIV-1 - genetics
Human immunodeficiency virus 1
Humans
Life Sciences
RNA Splicing
RNA, Messenger - genetics
RNA, Viral - genetics
title In vitro dimerization of human immunodeficiency virus type 1 (HIV-1) spliced RNAs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20dimerization%20of%20human%20immunodeficiency%20virus%20type%201%20(HIV-1)%20spliced%20RNAs&rft.jtitle=RNA%20(Cambridge)&rft.au=Sinck,%20Lucile&rft.date=2007-12-01&rft.volume=13&rft.issue=12&rft.spage=2141&rft.epage=2150&rft.pages=2141-2150&rft.issn=1355-8382&rft.eissn=1469-9001&rft_id=info:doi/10.1261/rna.678307&rft_dat=%3Cproquest_pubme%3E68511121%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20324463&rft_id=info:pmid/17925344&rfr_iscdi=true