Early alterations in the electrophysiological properties of rat spinal motoneurones following neonatal axotomy

Early in development, motoneurones are critically dependent on their target muscles for survival and differentiation. Previous studies have shown that neonatal axotomy causes massive motoneurone death and abnormal function in the surviving motoneurones. We have investigated the electrophysiological...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 2007-08, Vol.582 (3), p.1141-1161
Hauptverfasser: Mentis, George Z, Díaz, Eugenia, Moran, Linda B, Navarrete, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1161
container_issue 3
container_start_page 1141
container_title The Journal of physiology
container_volume 582
creator Mentis, George Z
Díaz, Eugenia
Moran, Linda B
Navarrete, Roberto
description Early in development, motoneurones are critically dependent on their target muscles for survival and differentiation. Previous studies have shown that neonatal axotomy causes massive motoneurone death and abnormal function in the surviving motoneurones. We have investigated the electrophysiological and morphological properties of motoneurones innervating the flexor tibialis anterior (TA) muscle during the first week after a neonatal axotomy, at a time when the motoneurones would be either in the process of degeneration or attempting to reinnervate their target muscles. We found that a large number (∼75%) of TA motoneurones died within 3 weeks after neonatal axotomy. Intracellular recordings revealed a marked increase in motoneurone excitability, as indicated by changes in passive and active membrane electrical properties. These changes were associated with a shift in the motoneurone firing pattern from a predominantly phasic pattern to a tonic pattern. Morphologically, the dendritic tree of the physiologically characterized axotomized cells was significantly reduced compared with age-matched normal motoneurones. These data demonstrate that motoneurone electrical properties are profoundly altered shortly after neonatal axotomy. In a subpopulation of the axotomized cells, abnormally high motoneurone excitability (input resistance significantly higher compared with control cells) was associated with a severe truncation of the dendritic arbor, suggesting that this excitability may represent an early electrophysiological correlate of motoneurone degeneration.
doi_str_mv 10.1113/jphysiol.2007.133488
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2075252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68124234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4895-bde898097eafb89ee1f9ca32bbdbe22d6d981ad993f83b8ce01d074e1b7a55863</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhS0EokPhHyDkFWKTqR_JxN4goaq8VAkWZW05zs3ElWMH28OQf19XGR7ddWNL93znXFsHodeUbCml_OJ2Hpdkg9syQtot5bwW4gna0Honq7aV_CnaEMJYxduGnqEXKd0SQjmR8jk6o2VGqOAb5K90dAvWLkPU2QafsPU4j4DBgckxnLaEvTXa4bkMIGYLCYcBFwdOs_VFmEIOHg6xHAkPwblwtH6PPQSvc9H17wJMy0v0bNAuwavTfY5-fLy6ufxcXX_79OXyw3VlaiGbqutBSEFkC3rohASggzSas67rO2Cs3_VSUN1LyQfBO2GA0J60NdCu1U0jdvwcvV9z50M3QW_A56idmqOddFxU0FY9VLwd1T78Uoy0DWtYCXh7Cojh5wFSVpNNBpzT5UuHpHaCsprxuoD1CpoYUoow_F1CibovSv0pSt0Xpdaiiu3N_w_8Zzo1UwC5AkfrYHlUqLr5-p1x1hTvu9U72v14tBHUSqdgLORFNYIpXnJqyu8Ad8O3Yg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68124234</pqid></control><display><type>article</type><title>Early alterations in the electrophysiological properties of rat spinal motoneurones following neonatal axotomy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>PubMed Central</source><creator>Mentis, George Z ; Díaz, Eugenia ; Moran, Linda B ; Navarrete, Roberto</creator><creatorcontrib>Mentis, George Z ; Díaz, Eugenia ; Moran, Linda B ; Navarrete, Roberto</creatorcontrib><description>Early in development, motoneurones are critically dependent on their target muscles for survival and differentiation. Previous studies have shown that neonatal axotomy causes massive motoneurone death and abnormal function in the surviving motoneurones. We have investigated the electrophysiological and morphological properties of motoneurones innervating the flexor tibialis anterior (TA) muscle during the first week after a neonatal axotomy, at a time when the motoneurones would be either in the process of degeneration or attempting to reinnervate their target muscles. We found that a large number (∼75%) of TA motoneurones died within 3 weeks after neonatal axotomy. Intracellular recordings revealed a marked increase in motoneurone excitability, as indicated by changes in passive and active membrane electrical properties. These changes were associated with a shift in the motoneurone firing pattern from a predominantly phasic pattern to a tonic pattern. Morphologically, the dendritic tree of the physiologically characterized axotomized cells was significantly reduced compared with age-matched normal motoneurones. These data demonstrate that motoneurone electrical properties are profoundly altered shortly after neonatal axotomy. In a subpopulation of the axotomized cells, abnormally high motoneurone excitability (input resistance significantly higher compared with control cells) was associated with a severe truncation of the dendritic arbor, suggesting that this excitability may represent an early electrophysiological correlate of motoneurone degeneration.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2007.133488</identifier><identifier>PMID: 17510183</identifier><language>eng</language><publisher>Oxford, UK: The Physiological Society</publisher><subject>Animals ; Animals, Newborn ; Axotomy ; Electric Stimulation ; Electrophysiology - methods ; Female ; Hindlimb - innervation ; Male ; Motor Neurons - cytology ; Motor Neurons - physiology ; Neuroscience ; Rats ; Rats, Sprague-Dawley ; Spinal Cord - physiology ; Synapses - physiology</subject><ispartof>The Journal of physiology, 2007-08, Vol.582 (3), p.1141-1161</ispartof><rights>2007 The Journal of Physiology © 2007 The Physiological Society</rights><rights>2007 The Authors. Journal compilation © 2007 The Physiological Society 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4895-bde898097eafb89ee1f9ca32bbdbe22d6d981ad993f83b8ce01d074e1b7a55863</citedby><cites>FETCH-LOGICAL-c4895-bde898097eafb89ee1f9ca32bbdbe22d6d981ad993f83b8ce01d074e1b7a55863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075252/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075252/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,1414,1430,27907,27908,45557,45558,46392,46816,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17510183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mentis, George Z</creatorcontrib><creatorcontrib>Díaz, Eugenia</creatorcontrib><creatorcontrib>Moran, Linda B</creatorcontrib><creatorcontrib>Navarrete, Roberto</creatorcontrib><title>Early alterations in the electrophysiological properties of rat spinal motoneurones following neonatal axotomy</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Early in development, motoneurones are critically dependent on their target muscles for survival and differentiation. Previous studies have shown that neonatal axotomy causes massive motoneurone death and abnormal function in the surviving motoneurones. We have investigated the electrophysiological and morphological properties of motoneurones innervating the flexor tibialis anterior (TA) muscle during the first week after a neonatal axotomy, at a time when the motoneurones would be either in the process of degeneration or attempting to reinnervate their target muscles. We found that a large number (∼75%) of TA motoneurones died within 3 weeks after neonatal axotomy. Intracellular recordings revealed a marked increase in motoneurone excitability, as indicated by changes in passive and active membrane electrical properties. These changes were associated with a shift in the motoneurone firing pattern from a predominantly phasic pattern to a tonic pattern. Morphologically, the dendritic tree of the physiologically characterized axotomized cells was significantly reduced compared with age-matched normal motoneurones. These data demonstrate that motoneurone electrical properties are profoundly altered shortly after neonatal axotomy. In a subpopulation of the axotomized cells, abnormally high motoneurone excitability (input resistance significantly higher compared with control cells) was associated with a severe truncation of the dendritic arbor, suggesting that this excitability may represent an early electrophysiological correlate of motoneurone degeneration.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Axotomy</subject><subject>Electric Stimulation</subject><subject>Electrophysiology - methods</subject><subject>Female</subject><subject>Hindlimb - innervation</subject><subject>Male</subject><subject>Motor Neurons - cytology</subject><subject>Motor Neurons - physiology</subject><subject>Neuroscience</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Spinal Cord - physiology</subject><subject>Synapses - physiology</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqNkUtv1DAUhS0EokPhHyDkFWKTqR_JxN4goaq8VAkWZW05zs3ElWMH28OQf19XGR7ddWNL93znXFsHodeUbCml_OJ2Hpdkg9syQtot5bwW4gna0Honq7aV_CnaEMJYxduGnqEXKd0SQjmR8jk6o2VGqOAb5K90dAvWLkPU2QafsPU4j4DBgckxnLaEvTXa4bkMIGYLCYcBFwdOs_VFmEIOHg6xHAkPwblwtH6PPQSvc9H17wJMy0v0bNAuwavTfY5-fLy6ufxcXX_79OXyw3VlaiGbqutBSEFkC3rohASggzSas67rO2Cs3_VSUN1LyQfBO2GA0J60NdCu1U0jdvwcvV9z50M3QW_A56idmqOddFxU0FY9VLwd1T78Uoy0DWtYCXh7Cojh5wFSVpNNBpzT5UuHpHaCsprxuoD1CpoYUoow_F1CibovSv0pSt0Xpdaiiu3N_w_8Zzo1UwC5AkfrYHlUqLr5-p1x1hTvu9U72v14tBHUSqdgLORFNYIpXnJqyu8Ad8O3Yg</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Mentis, George Z</creator><creator>Díaz, Eugenia</creator><creator>Moran, Linda B</creator><creator>Navarrete, Roberto</creator><general>The Physiological Society</general><general>Blackwell Publishing Ltd</general><general>Blackwell Science Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200708</creationdate><title>Early alterations in the electrophysiological properties of rat spinal motoneurones following neonatal axotomy</title><author>Mentis, George Z ; Díaz, Eugenia ; Moran, Linda B ; Navarrete, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4895-bde898097eafb89ee1f9ca32bbdbe22d6d981ad993f83b8ce01d074e1b7a55863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Axotomy</topic><topic>Electric Stimulation</topic><topic>Electrophysiology - methods</topic><topic>Female</topic><topic>Hindlimb - innervation</topic><topic>Male</topic><topic>Motor Neurons - cytology</topic><topic>Motor Neurons - physiology</topic><topic>Neuroscience</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Spinal Cord - physiology</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mentis, George Z</creatorcontrib><creatorcontrib>Díaz, Eugenia</creatorcontrib><creatorcontrib>Moran, Linda B</creatorcontrib><creatorcontrib>Navarrete, Roberto</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mentis, George Z</au><au>Díaz, Eugenia</au><au>Moran, Linda B</au><au>Navarrete, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early alterations in the electrophysiological properties of rat spinal motoneurones following neonatal axotomy</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2007-08</date><risdate>2007</risdate><volume>582</volume><issue>3</issue><spage>1141</spage><epage>1161</epage><pages>1141-1161</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract>Early in development, motoneurones are critically dependent on their target muscles for survival and differentiation. Previous studies have shown that neonatal axotomy causes massive motoneurone death and abnormal function in the surviving motoneurones. We have investigated the electrophysiological and morphological properties of motoneurones innervating the flexor tibialis anterior (TA) muscle during the first week after a neonatal axotomy, at a time when the motoneurones would be either in the process of degeneration or attempting to reinnervate their target muscles. We found that a large number (∼75%) of TA motoneurones died within 3 weeks after neonatal axotomy. Intracellular recordings revealed a marked increase in motoneurone excitability, as indicated by changes in passive and active membrane electrical properties. These changes were associated with a shift in the motoneurone firing pattern from a predominantly phasic pattern to a tonic pattern. Morphologically, the dendritic tree of the physiologically characterized axotomized cells was significantly reduced compared with age-matched normal motoneurones. These data demonstrate that motoneurone electrical properties are profoundly altered shortly after neonatal axotomy. In a subpopulation of the axotomized cells, abnormally high motoneurone excitability (input resistance significantly higher compared with control cells) was associated with a severe truncation of the dendritic arbor, suggesting that this excitability may represent an early electrophysiological correlate of motoneurone degeneration.</abstract><cop>Oxford, UK</cop><pub>The Physiological Society</pub><pmid>17510183</pmid><doi>10.1113/jphysiol.2007.133488</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3751
ispartof The Journal of physiology, 2007-08, Vol.582 (3), p.1141-1161
issn 0022-3751
1469-7793
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2075252
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; IngentaConnect Free/Open Access Journals; PubMed Central
subjects Animals
Animals, Newborn
Axotomy
Electric Stimulation
Electrophysiology - methods
Female
Hindlimb - innervation
Male
Motor Neurons - cytology
Motor Neurons - physiology
Neuroscience
Rats
Rats, Sprague-Dawley
Spinal Cord - physiology
Synapses - physiology
title Early alterations in the electrophysiological properties of rat spinal motoneurones following neonatal axotomy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20alterations%20in%20the%20electrophysiological%20properties%20of%20rat%20spinal%20motoneurones%20following%20neonatal%20axotomy&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Mentis,%20George%20Z&rft.date=2007-08&rft.volume=582&rft.issue=3&rft.spage=1141&rft.epage=1161&rft.pages=1141-1161&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1113/jphysiol.2007.133488&rft_dat=%3Cproquest_pubme%3E68124234%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68124234&rft_id=info:pmid/17510183&rfr_iscdi=true