Spino-dendritic cross-talk in rodent Purkinje neurons mediated by endogenous Ca2+-binding proteins
The range of actions of the second messenger Ca 2+ is a key determinant of neuronal excitability and plasticity. For dendritic spines, there is on-going debate regarding how diffusional efflux of Ca 2+ affects spine signalling. However, the consequences of spino-dendritic coupling for dendritic Ca 2...
Gespeichert in:
Veröffentlicht in: | The Journal of physiology 2007-06, Vol.581 (2), p.619-629 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 629 |
---|---|
container_issue | 2 |
container_start_page | 619 |
container_title | The Journal of physiology |
container_volume | 581 |
creator | Schmidt, Hartmut Kunerth, Svenja Wilms, Christian Strotmann, Rainer Eilers, Jens |
description | The range of actions of the second messenger Ca 2+ is a key determinant of neuronal excitability and plasticity. For dendritic spines, there is on-going debate regarding how
diffusional efflux of Ca 2+ affects spine signalling. However, the consequences of spino-dendritic coupling for dendritic Ca 2+ homeostasis and downstream signalling cascades have not been explored to date. We addressed this question by four-dimensional
computer simulations, which were based on Ca 2+ -imaging data from mice that either express or lack distinct endogenous Ca 2+ -binding proteins. Our simulations revealed that single active spines do not affect dendritic Ca 2+ signalling. Neighbouring, coactive spines, however, induce sizeable increases in dendritic [Ca 2+ ] i when they process slow synaptic Ca 2+ signals, such as those implicated in the induction of long-term plasticity. This spino-dendritic coupling is mediated by
buffered diffusion, specifically by diffusing calbindin-bound Ca 2+ . This represents a central mechanism for activating calmodulin in dendritic shafts and therefore a novel form of signal integration
in spiny dendrites. |
doi_str_mv | 10.1113/jphysiol.2007.127860 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2075171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70578416</sourcerecordid><originalsourceid>FETCH-LOGICAL-h3927-a1c1852070be118bdf97c3748f188ffaa8ee0791034cee2e5f7a58f4a25eece63</originalsourceid><addsrcrecordid>eNpVUUtv1DAQthCIbgv_ACGf4FBl8dhJ7FyQqhVPVaIS5Ww5yWTjbdYOdkKVf49XaXmc5vC9ZuYj5BWwLQCId4exX6L1w5YzJrfApSrZE7KBvKwyKSvxlGwY4zwTsoAzch7jgTEQrKqekzOQIpdc8g2pv4_W-axF1wY72YY2wceYTWa4o9bR4BMy0Zs53Fl3QOpwDt5FesTWmglbWi80Sf0enZ8j3Rl-mdXWtdbt6Rj8hNbFF-RZZ4aILx_mBfnx8cPt7nN2_e3Tl93VddaLisvMQAOq4EyyGgFU3XaVbITMVQdKdZ0xCpHJCpjIG0SORSdNobrc8AKxwVJckPer7zjXab8mLR7MoMdgjyYs2hur_0ec7fXe_9IpswAJyeDNg0HwP2eMkz7a2OAwGIfpOi1ZIVUOp6TX_yb9iXh8ayJUK-HeDrj8xZk-Vacfq9On6vRanb79esOhlEn7dtX2dt_f24B6ZUffWJwWXSjQXJdQid8WQp9E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70578416</pqid></control><display><type>article</type><title>Spino-dendritic cross-talk in rodent Purkinje neurons mediated by endogenous Ca2+-binding proteins</title><source>MEDLINE</source><source>Wiley Online Library</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Schmidt, Hartmut ; Kunerth, Svenja ; Wilms, Christian ; Strotmann, Rainer ; Eilers, Jens</creator><creatorcontrib>Schmidt, Hartmut ; Kunerth, Svenja ; Wilms, Christian ; Strotmann, Rainer ; Eilers, Jens</creatorcontrib><description>The range of actions of the second messenger Ca 2+ is a key determinant of neuronal excitability and plasticity. For dendritic spines, there is on-going debate regarding how
diffusional efflux of Ca 2+ affects spine signalling. However, the consequences of spino-dendritic coupling for dendritic Ca 2+ homeostasis and downstream signalling cascades have not been explored to date. We addressed this question by four-dimensional
computer simulations, which were based on Ca 2+ -imaging data from mice that either express or lack distinct endogenous Ca 2+ -binding proteins. Our simulations revealed that single active spines do not affect dendritic Ca 2+ signalling. Neighbouring, coactive spines, however, induce sizeable increases in dendritic [Ca 2+ ] i when they process slow synaptic Ca 2+ signals, such as those implicated in the induction of long-term plasticity. This spino-dendritic coupling is mediated by
buffered diffusion, specifically by diffusing calbindin-bound Ca 2+ . This represents a central mechanism for activating calmodulin in dendritic shafts and therefore a novel form of signal integration
in spiny dendrites.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2007.127860</identifier><identifier>PMID: 17347272</identifier><language>eng</language><publisher>Oxford, UK: The Physiological Society</publisher><subject>Animals ; Calbindins ; Calcium - metabolism ; Calcium Signaling ; Calcium-Binding Proteins - genetics ; Calcium-Binding Proteins - metabolism ; Calmodulin - metabolism ; Computer Simulation ; Dendritic Spines - metabolism ; Dendritic Spines - physiology ; Diffusion ; Kinetics ; Mice ; Mice, Knockout ; Models, Neurological ; Neuronal Plasticity ; Neuroscience ; Parvalbumins - metabolism ; Purkinje Cells - metabolism ; Purkinje Cells - physiology ; S100 Calcium Binding Protein G - metabolism ; Synaptic Transmission</subject><ispartof>The Journal of physiology, 2007-06, Vol.581 (2), p.619-629</ispartof><rights>2007 The Journal of Physiology © 2007 The Physiological Society</rights><rights>2007 The Authors. Journal compilation © 2007 The Physiological Society 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075171/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075171/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17347272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmidt, Hartmut</creatorcontrib><creatorcontrib>Kunerth, Svenja</creatorcontrib><creatorcontrib>Wilms, Christian</creatorcontrib><creatorcontrib>Strotmann, Rainer</creatorcontrib><creatorcontrib>Eilers, Jens</creatorcontrib><title>Spino-dendritic cross-talk in rodent Purkinje neurons mediated by endogenous Ca2+-binding proteins</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>The range of actions of the second messenger Ca 2+ is a key determinant of neuronal excitability and plasticity. For dendritic spines, there is on-going debate regarding how
diffusional efflux of Ca 2+ affects spine signalling. However, the consequences of spino-dendritic coupling for dendritic Ca 2+ homeostasis and downstream signalling cascades have not been explored to date. We addressed this question by four-dimensional
computer simulations, which were based on Ca 2+ -imaging data from mice that either express or lack distinct endogenous Ca 2+ -binding proteins. Our simulations revealed that single active spines do not affect dendritic Ca 2+ signalling. Neighbouring, coactive spines, however, induce sizeable increases in dendritic [Ca 2+ ] i when they process slow synaptic Ca 2+ signals, such as those implicated in the induction of long-term plasticity. This spino-dendritic coupling is mediated by
buffered diffusion, specifically by diffusing calbindin-bound Ca 2+ . This represents a central mechanism for activating calmodulin in dendritic shafts and therefore a novel form of signal integration
in spiny dendrites.</description><subject>Animals</subject><subject>Calbindins</subject><subject>Calcium - metabolism</subject><subject>Calcium Signaling</subject><subject>Calcium-Binding Proteins - genetics</subject><subject>Calcium-Binding Proteins - metabolism</subject><subject>Calmodulin - metabolism</subject><subject>Computer Simulation</subject><subject>Dendritic Spines - metabolism</subject><subject>Dendritic Spines - physiology</subject><subject>Diffusion</subject><subject>Kinetics</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Models, Neurological</subject><subject>Neuronal Plasticity</subject><subject>Neuroscience</subject><subject>Parvalbumins - metabolism</subject><subject>Purkinje Cells - metabolism</subject><subject>Purkinje Cells - physiology</subject><subject>S100 Calcium Binding Protein G - metabolism</subject><subject>Synaptic Transmission</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUUtv1DAQthCIbgv_ACGf4FBl8dhJ7FyQqhVPVaIS5Ww5yWTjbdYOdkKVf49XaXmc5vC9ZuYj5BWwLQCId4exX6L1w5YzJrfApSrZE7KBvKwyKSvxlGwY4zwTsoAzch7jgTEQrKqekzOQIpdc8g2pv4_W-axF1wY72YY2wceYTWa4o9bR4BMy0Zs53Fl3QOpwDt5FesTWmglbWi80Sf0enZ8j3Rl-mdXWtdbt6Rj8hNbFF-RZZ4aILx_mBfnx8cPt7nN2_e3Tl93VddaLisvMQAOq4EyyGgFU3XaVbITMVQdKdZ0xCpHJCpjIG0SORSdNobrc8AKxwVJckPer7zjXab8mLR7MoMdgjyYs2hur_0ec7fXe_9IpswAJyeDNg0HwP2eMkz7a2OAwGIfpOi1ZIVUOp6TX_yb9iXh8ayJUK-HeDrj8xZk-Vacfq9On6vRanb79esOhlEn7dtX2dt_f24B6ZUffWJwWXSjQXJdQid8WQp9E</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Schmidt, Hartmut</creator><creator>Kunerth, Svenja</creator><creator>Wilms, Christian</creator><creator>Strotmann, Rainer</creator><creator>Eilers, Jens</creator><general>The Physiological Society</general><general>Blackwell Publishing Ltd</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200706</creationdate><title>Spino-dendritic cross-talk in rodent Purkinje neurons mediated by endogenous Ca2+-binding proteins</title><author>Schmidt, Hartmut ; Kunerth, Svenja ; Wilms, Christian ; Strotmann, Rainer ; Eilers, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h3927-a1c1852070be118bdf97c3748f188ffaa8ee0791034cee2e5f7a58f4a25eece63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Calbindins</topic><topic>Calcium - metabolism</topic><topic>Calcium Signaling</topic><topic>Calcium-Binding Proteins - genetics</topic><topic>Calcium-Binding Proteins - metabolism</topic><topic>Calmodulin - metabolism</topic><topic>Computer Simulation</topic><topic>Dendritic Spines - metabolism</topic><topic>Dendritic Spines - physiology</topic><topic>Diffusion</topic><topic>Kinetics</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Models, Neurological</topic><topic>Neuronal Plasticity</topic><topic>Neuroscience</topic><topic>Parvalbumins - metabolism</topic><topic>Purkinje Cells - metabolism</topic><topic>Purkinje Cells - physiology</topic><topic>S100 Calcium Binding Protein G - metabolism</topic><topic>Synaptic Transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, Hartmut</creatorcontrib><creatorcontrib>Kunerth, Svenja</creatorcontrib><creatorcontrib>Wilms, Christian</creatorcontrib><creatorcontrib>Strotmann, Rainer</creatorcontrib><creatorcontrib>Eilers, Jens</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt, Hartmut</au><au>Kunerth, Svenja</au><au>Wilms, Christian</au><au>Strotmann, Rainer</au><au>Eilers, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spino-dendritic cross-talk in rodent Purkinje neurons mediated by endogenous Ca2+-binding proteins</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2007-06</date><risdate>2007</risdate><volume>581</volume><issue>2</issue><spage>619</spage><epage>629</epage><pages>619-629</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract>The range of actions of the second messenger Ca 2+ is a key determinant of neuronal excitability and plasticity. For dendritic spines, there is on-going debate regarding how
diffusional efflux of Ca 2+ affects spine signalling. However, the consequences of spino-dendritic coupling for dendritic Ca 2+ homeostasis and downstream signalling cascades have not been explored to date. We addressed this question by four-dimensional
computer simulations, which were based on Ca 2+ -imaging data from mice that either express or lack distinct endogenous Ca 2+ -binding proteins. Our simulations revealed that single active spines do not affect dendritic Ca 2+ signalling. Neighbouring, coactive spines, however, induce sizeable increases in dendritic [Ca 2+ ] i when they process slow synaptic Ca 2+ signals, such as those implicated in the induction of long-term plasticity. This spino-dendritic coupling is mediated by
buffered diffusion, specifically by diffusing calbindin-bound Ca 2+ . This represents a central mechanism for activating calmodulin in dendritic shafts and therefore a novel form of signal integration
in spiny dendrites.</abstract><cop>Oxford, UK</cop><pub>The Physiological Society</pub><pmid>17347272</pmid><doi>10.1113/jphysiol.2007.127860</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3751 |
ispartof | The Journal of physiology, 2007-06, Vol.581 (2), p.619-629 |
issn | 0022-3751 1469-7793 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2075171 |
source | MEDLINE; Wiley Online Library; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Calbindins Calcium - metabolism Calcium Signaling Calcium-Binding Proteins - genetics Calcium-Binding Proteins - metabolism Calmodulin - metabolism Computer Simulation Dendritic Spines - metabolism Dendritic Spines - physiology Diffusion Kinetics Mice Mice, Knockout Models, Neurological Neuronal Plasticity Neuroscience Parvalbumins - metabolism Purkinje Cells - metabolism Purkinje Cells - physiology S100 Calcium Binding Protein G - metabolism Synaptic Transmission |
title | Spino-dendritic cross-talk in rodent Purkinje neurons mediated by endogenous Ca2+-binding proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A27%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spino-dendritic%20cross-talk%20in%20rodent%20Purkinje%20neurons%20mediated%20by%20endogenous%20Ca2+-binding%20proteins&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Schmidt,%20Hartmut&rft.date=2007-06&rft.volume=581&rft.issue=2&rft.spage=619&rft.epage=629&rft.pages=619-629&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1113/jphysiol.2007.127860&rft_dat=%3Cproquest_pubme%3E70578416%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70578416&rft_id=info:pmid/17347272&rfr_iscdi=true |