A CUL-2 Ubiquitin Ligase Containing Three FEM Proteins Degrades TRA-1 to Regulate C. elegans Sex Determination

In Caenorhabditis elegans, the Gli-family transcription factor TRA-1 is the terminal effector of the sex-determination pathway. TRA-1 activity inhibits male development and allows female fates. Genetic studies have indicated that TRA-1 is negatively regulated by the fem-1, fem-2, and fem-3 genes. Ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental cell 2007-07, Vol.13 (1), p.127-139
Hauptverfasser: Starostina, Natalia G., Lim, Jae-min, Schvarzstein, Mara, Wells, Lance, Spence, Andrew M., Kipreos, Edward T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Caenorhabditis elegans, the Gli-family transcription factor TRA-1 is the terminal effector of the sex-determination pathway. TRA-1 activity inhibits male development and allows female fates. Genetic studies have indicated that TRA-1 is negatively regulated by the fem-1, fem-2, and fem-3 genes. However, the mechanism of this regulation has not been understood. Here, we present data that TRA-1 is regulated by degradation mediated by a CUL-2-based ubiquitin ligase complex that contains FEM-1 as the substrate-recognition subunit, and FEM-2 and FEM-3 as cofactors. CUL-2 physically associates with both FEM-1 and TRA-1 in vivo, and cul-2 mutant males share feminization phenotypes with fem mutants. CUL-2 and the FEM proteins negatively regulate TRA-1 protein levels in C. elegans. When expressed in human cells, the FEM proteins interact with human CUL2 and induce the proteasome-dependent degradation of TRA-1. This work demonstrates that the terminal step in C. elegans sex determination is controlled by ubiquitin-mediated proteolysis.
ISSN:1534-5807
1878-1551
DOI:10.1016/j.devcel.2007.05.008