Changes in Chromatin Structure and Mobility in Living Cells at Sites of DNA Double-Strand Breaks
The repair of DNA double-strand breaks (DSBs) is facilitated by the phosphorylation of H2AX, which organizes DNA damage signaling and chromatin remodeling complexes in the vicinity of the lesion (Pilch, D.R., O.A. Sedelnikova, C. Redon, A. Celeste, A. Nussenzweig, and W.M. Bonner. 2003. Biochem. Cel...
Gespeichert in:
Veröffentlicht in: | The Journal of cell biology 2006-03, Vol.172 (6), p.823-834 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 834 |
---|---|
container_issue | 6 |
container_start_page | 823 |
container_title | The Journal of cell biology |
container_volume | 172 |
creator | Kruhlak, Michael J. Celeste, Arkady Dellaire, Graham Fernandez-Capetillo, Oscar Müller, Waltraud G. McNally, James G. Bazett-Jones, David P. Nussenzweig, André |
description | The repair of DNA double-strand breaks (DSBs) is facilitated by the phosphorylation of H2AX, which organizes DNA damage signaling and chromatin remodeling complexes in the vicinity of the lesion (Pilch, D.R., O.A. Sedelnikova, C. Redon, A. Celeste, A. Nussenzweig, and W.M. Bonner. 2003. Biochem. Cell Biol. 81:123-129; Morrison, A.J., and X. Shen. 2005. Cell Cycle. 4:568-571; van Attikum, H., and S.M. Gasser. 2005. Nat. Rev. Mol. Cell. Biol. 6:757-765). The disruption of DNA integrity induces an alteration of chromatin architecture that has been proposed to activate the DNA damage transducing kinase ataxia telangiectasia mutated (ATM; Bakkenist, C.J., and M.B. Kastan. 2003. Nature. 421:499-506). However, little is known about the physical properties of damaged chromatin. In this study, we use a photoactivatable version of GFP-tagged histone H2B to examine the mobility and structure of chromatin containing DSBs in living cells. We find that chromatin containing DSBs exhibits limited mobility but undergoes an energy-dependent local expansion immediately after DNA damage. The localized expansion observed in real time corresponds to a 30-40% reduction in the density of chromatin fibers in the vicinity of DSBs, as measured by energy-filtering transmission electron microscopy. The observed opening of chromatin occurs independently of H2AX and ATM. We propose that localized adenosine triphosphate-dependent decondensation of chromatin at DSBs establishes an accessible subnuclear environment that facilitates DNA damage signaling and repair. |
doi_str_mv | 10.1083/jcb.200510015 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2063727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4151924</jstor_id><sourcerecordid>4151924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-c8bf4a95790bb27771804602151d9dea544c27389fa6c579b8be87aa78fc890d3</originalsourceid><addsrcrecordid>eNqFkc2P0zAQxS0EYkvhyA0hiwO3LGPHju0L0pLlSypwWDgbx3FalzTetZ2V9r_HpVX5uHDySPOb5zfzEHpK4JyArF9tbXdOATgBIPweWhDOoJKEwX20AKCkUpzyM_QopS0AMMHqh-iMNJxCLfkCfW83Zlq7hP2E200MO5NLdZXjbPMcHTZTjz-Fzo8-3-2Zlb_10xq3bhwTNhlf-VyGw4AvP1_gyzB3o6vK9H7sTXTmR3qMHgxmTO7J8V2ib-_efm0_VKsv7z-2F6vK8hpyZWU3MKO4UNB1VAhBJLCm-OekV70znDFLRS3VYBpbqE52TgpjhBysVNDXS_T6oHs9dzvXWzcVF6O-jn5n4p0Oxuu_O5Pf6HW41RSaWhTpJXp5FIjhZnYp651PtuxpJhfmpBshGJFK_RckghDS_AJf_ANuwxyncgVNCwSqIftvqwNkY0gpuuFkmYDeJ6xLwvqUcOGf_7nnb_oYaQGeHYBtyiGe-qxcUlFW_wQY86nj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217109617</pqid></control><display><type>article</type><title>Changes in Chromatin Structure and Mobility in Living Cells at Sites of DNA Double-Strand Breaks</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Kruhlak, Michael J. ; Celeste, Arkady ; Dellaire, Graham ; Fernandez-Capetillo, Oscar ; Müller, Waltraud G. ; McNally, James G. ; Bazett-Jones, David P. ; Nussenzweig, André</creator><creatorcontrib>Kruhlak, Michael J. ; Celeste, Arkady ; Dellaire, Graham ; Fernandez-Capetillo, Oscar ; Müller, Waltraud G. ; McNally, James G. ; Bazett-Jones, David P. ; Nussenzweig, André</creatorcontrib><description>The repair of DNA double-strand breaks (DSBs) is facilitated by the phosphorylation of H2AX, which organizes DNA damage signaling and chromatin remodeling complexes in the vicinity of the lesion (Pilch, D.R., O.A. Sedelnikova, C. Redon, A. Celeste, A. Nussenzweig, and W.M. Bonner. 2003. Biochem. Cell Biol. 81:123-129; Morrison, A.J., and X. Shen. 2005. Cell Cycle. 4:568-571; van Attikum, H., and S.M. Gasser. 2005. Nat. Rev. Mol. Cell. Biol. 6:757-765). The disruption of DNA integrity induces an alteration of chromatin architecture that has been proposed to activate the DNA damage transducing kinase ataxia telangiectasia mutated (ATM; Bakkenist, C.J., and M.B. Kastan. 2003. Nature. 421:499-506). However, little is known about the physical properties of damaged chromatin. In this study, we use a photoactivatable version of GFP-tagged histone H2B to examine the mobility and structure of chromatin containing DSBs in living cells. We find that chromatin containing DSBs exhibits limited mobility but undergoes an energy-dependent local expansion immediately after DNA damage. The localized expansion observed in real time corresponds to a 30-40% reduction in the density of chromatin fibers in the vicinity of DSBs, as measured by energy-filtering transmission electron microscopy. The observed opening of chromatin occurs independently of H2AX and ATM. We propose that localized adenosine triphosphate-dependent decondensation of chromatin at DSBs establishes an accessible subnuclear environment that facilitates DNA damage signaling and repair.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.200510015</identifier><identifier>PMID: 16520385</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; Cell lines ; Cell nucleus ; Cells, Cultured ; Cellular biology ; Chromatin ; Chromatin - chemistry ; Chromatin - genetics ; Chromatin - ultrastructure ; Chromosome Positioning - genetics ; DNA ; DNA - genetics ; DNA - ultrastructure ; DNA damage ; DNA Damage - genetics ; DNA Repair - genetics ; Energy Metabolism - genetics ; Enzymes ; Female ; Fibroblasts ; Fluorescence ; Green Fluorescent Proteins ; HeLa Cells ; Histones ; Histones - genetics ; Histones - metabolism ; Humans ; Irradiation ; Male ; Mice ; Mice, Knockout ; Microscopy, Electron, Transmission ; Proteins ; Signal Transduction - genetics ; Ultraviolet lasers</subject><ispartof>The Journal of cell biology, 2006-03, Vol.172 (6), p.823-834</ispartof><rights>Copyright 2006 The Rockefeller University Press</rights><rights>Copyright Rockefeller University Press Mar 13, 2006</rights><rights>Copyright © 2006, The Rockefeller University Press 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-c8bf4a95790bb27771804602151d9dea544c27389fa6c579b8be87aa78fc890d3</citedby><cites>FETCH-LOGICAL-c530t-c8bf4a95790bb27771804602151d9dea544c27389fa6c579b8be87aa78fc890d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16520385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kruhlak, Michael J.</creatorcontrib><creatorcontrib>Celeste, Arkady</creatorcontrib><creatorcontrib>Dellaire, Graham</creatorcontrib><creatorcontrib>Fernandez-Capetillo, Oscar</creatorcontrib><creatorcontrib>Müller, Waltraud G.</creatorcontrib><creatorcontrib>McNally, James G.</creatorcontrib><creatorcontrib>Bazett-Jones, David P.</creatorcontrib><creatorcontrib>Nussenzweig, André</creatorcontrib><title>Changes in Chromatin Structure and Mobility in Living Cells at Sites of DNA Double-Strand Breaks</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>The repair of DNA double-strand breaks (DSBs) is facilitated by the phosphorylation of H2AX, which organizes DNA damage signaling and chromatin remodeling complexes in the vicinity of the lesion (Pilch, D.R., O.A. Sedelnikova, C. Redon, A. Celeste, A. Nussenzweig, and W.M. Bonner. 2003. Biochem. Cell Biol. 81:123-129; Morrison, A.J., and X. Shen. 2005. Cell Cycle. 4:568-571; van Attikum, H., and S.M. Gasser. 2005. Nat. Rev. Mol. Cell. Biol. 6:757-765). The disruption of DNA integrity induces an alteration of chromatin architecture that has been proposed to activate the DNA damage transducing kinase ataxia telangiectasia mutated (ATM; Bakkenist, C.J., and M.B. Kastan. 2003. Nature. 421:499-506). However, little is known about the physical properties of damaged chromatin. In this study, we use a photoactivatable version of GFP-tagged histone H2B to examine the mobility and structure of chromatin containing DSBs in living cells. We find that chromatin containing DSBs exhibits limited mobility but undergoes an energy-dependent local expansion immediately after DNA damage. The localized expansion observed in real time corresponds to a 30-40% reduction in the density of chromatin fibers in the vicinity of DSBs, as measured by energy-filtering transmission electron microscopy. The observed opening of chromatin occurs independently of H2AX and ATM. We propose that localized adenosine triphosphate-dependent decondensation of chromatin at DSBs establishes an accessible subnuclear environment that facilitates DNA damage signaling and repair.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Cell lines</subject><subject>Cell nucleus</subject><subject>Cells, Cultured</subject><subject>Cellular biology</subject><subject>Chromatin</subject><subject>Chromatin - chemistry</subject><subject>Chromatin - genetics</subject><subject>Chromatin - ultrastructure</subject><subject>Chromosome Positioning - genetics</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA - ultrastructure</subject><subject>DNA damage</subject><subject>DNA Damage - genetics</subject><subject>DNA Repair - genetics</subject><subject>Energy Metabolism - genetics</subject><subject>Enzymes</subject><subject>Female</subject><subject>Fibroblasts</subject><subject>Fluorescence</subject><subject>Green Fluorescent Proteins</subject><subject>HeLa Cells</subject><subject>Histones</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Irradiation</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microscopy, Electron, Transmission</subject><subject>Proteins</subject><subject>Signal Transduction - genetics</subject><subject>Ultraviolet lasers</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2P0zAQxS0EYkvhyA0hiwO3LGPHju0L0pLlSypwWDgbx3FalzTetZ2V9r_HpVX5uHDySPOb5zfzEHpK4JyArF9tbXdOATgBIPweWhDOoJKEwX20AKCkUpzyM_QopS0AMMHqh-iMNJxCLfkCfW83Zlq7hP2E200MO5NLdZXjbPMcHTZTjz-Fzo8-3-2Zlb_10xq3bhwTNhlf-VyGw4AvP1_gyzB3o6vK9H7sTXTmR3qMHgxmTO7J8V2ib-_efm0_VKsv7z-2F6vK8hpyZWU3MKO4UNB1VAhBJLCm-OekV70znDFLRS3VYBpbqE52TgpjhBysVNDXS_T6oHs9dzvXWzcVF6O-jn5n4p0Oxuu_O5Pf6HW41RSaWhTpJXp5FIjhZnYp651PtuxpJhfmpBshGJFK_RckghDS_AJf_ANuwxyncgVNCwSqIftvqwNkY0gpuuFkmYDeJ6xLwvqUcOGf_7nnb_oYaQGeHYBtyiGe-qxcUlFW_wQY86nj</recordid><startdate>20060313</startdate><enddate>20060313</enddate><creator>Kruhlak, Michael J.</creator><creator>Celeste, Arkady</creator><creator>Dellaire, Graham</creator><creator>Fernandez-Capetillo, Oscar</creator><creator>Müller, Waltraud G.</creator><creator>McNally, James G.</creator><creator>Bazett-Jones, David P.</creator><creator>Nussenzweig, André</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060313</creationdate><title>Changes in Chromatin Structure and Mobility in Living Cells at Sites of DNA Double-Strand Breaks</title><author>Kruhlak, Michael J. ; Celeste, Arkady ; Dellaire, Graham ; Fernandez-Capetillo, Oscar ; Müller, Waltraud G. ; McNally, James G. ; Bazett-Jones, David P. ; Nussenzweig, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-c8bf4a95790bb27771804602151d9dea544c27389fa6c579b8be87aa78fc890d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Cell lines</topic><topic>Cell nucleus</topic><topic>Cells, Cultured</topic><topic>Cellular biology</topic><topic>Chromatin</topic><topic>Chromatin - chemistry</topic><topic>Chromatin - genetics</topic><topic>Chromatin - ultrastructure</topic><topic>Chromosome Positioning - genetics</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA - ultrastructure</topic><topic>DNA damage</topic><topic>DNA Damage - genetics</topic><topic>DNA Repair - genetics</topic><topic>Energy Metabolism - genetics</topic><topic>Enzymes</topic><topic>Female</topic><topic>Fibroblasts</topic><topic>Fluorescence</topic><topic>Green Fluorescent Proteins</topic><topic>HeLa Cells</topic><topic>Histones</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Irradiation</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microscopy, Electron, Transmission</topic><topic>Proteins</topic><topic>Signal Transduction - genetics</topic><topic>Ultraviolet lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kruhlak, Michael J.</creatorcontrib><creatorcontrib>Celeste, Arkady</creatorcontrib><creatorcontrib>Dellaire, Graham</creatorcontrib><creatorcontrib>Fernandez-Capetillo, Oscar</creatorcontrib><creatorcontrib>Müller, Waltraud G.</creatorcontrib><creatorcontrib>McNally, James G.</creatorcontrib><creatorcontrib>Bazett-Jones, David P.</creatorcontrib><creatorcontrib>Nussenzweig, André</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kruhlak, Michael J.</au><au>Celeste, Arkady</au><au>Dellaire, Graham</au><au>Fernandez-Capetillo, Oscar</au><au>Müller, Waltraud G.</au><au>McNally, James G.</au><au>Bazett-Jones, David P.</au><au>Nussenzweig, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Changes in Chromatin Structure and Mobility in Living Cells at Sites of DNA Double-Strand Breaks</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2006-03-13</date><risdate>2006</risdate><volume>172</volume><issue>6</issue><spage>823</spage><epage>834</epage><pages>823-834</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>The repair of DNA double-strand breaks (DSBs) is facilitated by the phosphorylation of H2AX, which organizes DNA damage signaling and chromatin remodeling complexes in the vicinity of the lesion (Pilch, D.R., O.A. Sedelnikova, C. Redon, A. Celeste, A. Nussenzweig, and W.M. Bonner. 2003. Biochem. Cell Biol. 81:123-129; Morrison, A.J., and X. Shen. 2005. Cell Cycle. 4:568-571; van Attikum, H., and S.M. Gasser. 2005. Nat. Rev. Mol. Cell. Biol. 6:757-765). The disruption of DNA integrity induces an alteration of chromatin architecture that has been proposed to activate the DNA damage transducing kinase ataxia telangiectasia mutated (ATM; Bakkenist, C.J., and M.B. Kastan. 2003. Nature. 421:499-506). However, little is known about the physical properties of damaged chromatin. In this study, we use a photoactivatable version of GFP-tagged histone H2B to examine the mobility and structure of chromatin containing DSBs in living cells. We find that chromatin containing DSBs exhibits limited mobility but undergoes an energy-dependent local expansion immediately after DNA damage. The localized expansion observed in real time corresponds to a 30-40% reduction in the density of chromatin fibers in the vicinity of DSBs, as measured by energy-filtering transmission electron microscopy. The observed opening of chromatin occurs independently of H2AX and ATM. We propose that localized adenosine triphosphate-dependent decondensation of chromatin at DSBs establishes an accessible subnuclear environment that facilitates DNA damage signaling and repair.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>16520385</pmid><doi>10.1083/jcb.200510015</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9525 |
ispartof | The Journal of cell biology, 2006-03, Vol.172 (6), p.823-834 |
issn | 0021-9525 1540-8140 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2063727 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Adenosine Triphosphate - metabolism Animals Cell lines Cell nucleus Cells, Cultured Cellular biology Chromatin Chromatin - chemistry Chromatin - genetics Chromatin - ultrastructure Chromosome Positioning - genetics DNA DNA - genetics DNA - ultrastructure DNA damage DNA Damage - genetics DNA Repair - genetics Energy Metabolism - genetics Enzymes Female Fibroblasts Fluorescence Green Fluorescent Proteins HeLa Cells Histones Histones - genetics Histones - metabolism Humans Irradiation Male Mice Mice, Knockout Microscopy, Electron, Transmission Proteins Signal Transduction - genetics Ultraviolet lasers |
title | Changes in Chromatin Structure and Mobility in Living Cells at Sites of DNA Double-Strand Breaks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Changes%20in%20Chromatin%20Structure%20and%20Mobility%20in%20Living%20Cells%20at%20Sites%20of%20DNA%20Double-Strand%20Breaks&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Kruhlak,%20Michael%20J.&rft.date=2006-03-13&rft.volume=172&rft.issue=6&rft.spage=823&rft.epage=834&rft.pages=823-834&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.200510015&rft_dat=%3Cjstor_pubme%3E4151924%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217109617&rft_id=info:pmid/16520385&rft_jstor_id=4151924&rfr_iscdi=true |