Changes in Chromatin Structure and Mobility in Living Cells at Sites of DNA Double-Strand Breaks

The repair of DNA double-strand breaks (DSBs) is facilitated by the phosphorylation of H2AX, which organizes DNA damage signaling and chromatin remodeling complexes in the vicinity of the lesion (Pilch, D.R., O.A. Sedelnikova, C. Redon, A. Celeste, A. Nussenzweig, and W.M. Bonner. 2003. Biochem. Cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of cell biology 2006-03, Vol.172 (6), p.823-834
Hauptverfasser: Kruhlak, Michael J., Celeste, Arkady, Dellaire, Graham, Fernandez-Capetillo, Oscar, Müller, Waltraud G., McNally, James G., Bazett-Jones, David P., Nussenzweig, André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 834
container_issue 6
container_start_page 823
container_title The Journal of cell biology
container_volume 172
creator Kruhlak, Michael J.
Celeste, Arkady
Dellaire, Graham
Fernandez-Capetillo, Oscar
Müller, Waltraud G.
McNally, James G.
Bazett-Jones, David P.
Nussenzweig, André
description The repair of DNA double-strand breaks (DSBs) is facilitated by the phosphorylation of H2AX, which organizes DNA damage signaling and chromatin remodeling complexes in the vicinity of the lesion (Pilch, D.R., O.A. Sedelnikova, C. Redon, A. Celeste, A. Nussenzweig, and W.M. Bonner. 2003. Biochem. Cell Biol. 81:123-129; Morrison, A.J., and X. Shen. 2005. Cell Cycle. 4:568-571; van Attikum, H., and S.M. Gasser. 2005. Nat. Rev. Mol. Cell. Biol. 6:757-765). The disruption of DNA integrity induces an alteration of chromatin architecture that has been proposed to activate the DNA damage transducing kinase ataxia telangiectasia mutated (ATM; Bakkenist, C.J., and M.B. Kastan. 2003. Nature. 421:499-506). However, little is known about the physical properties of damaged chromatin. In this study, we use a photoactivatable version of GFP-tagged histone H2B to examine the mobility and structure of chromatin containing DSBs in living cells. We find that chromatin containing DSBs exhibits limited mobility but undergoes an energy-dependent local expansion immediately after DNA damage. The localized expansion observed in real time corresponds to a 30-40% reduction in the density of chromatin fibers in the vicinity of DSBs, as measured by energy-filtering transmission electron microscopy. The observed opening of chromatin occurs independently of H2AX and ATM. We propose that localized adenosine triphosphate-dependent decondensation of chromatin at DSBs establishes an accessible subnuclear environment that facilitates DNA damage signaling and repair.
doi_str_mv 10.1083/jcb.200510015
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2063727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4151924</jstor_id><sourcerecordid>4151924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-c8bf4a95790bb27771804602151d9dea544c27389fa6c579b8be87aa78fc890d3</originalsourceid><addsrcrecordid>eNqFkc2P0zAQxS0EYkvhyA0hiwO3LGPHju0L0pLlSypwWDgbx3FalzTetZ2V9r_HpVX5uHDySPOb5zfzEHpK4JyArF9tbXdOATgBIPweWhDOoJKEwX20AKCkUpzyM_QopS0AMMHqh-iMNJxCLfkCfW83Zlq7hP2E200MO5NLdZXjbPMcHTZTjz-Fzo8-3-2Zlb_10xq3bhwTNhlf-VyGw4AvP1_gyzB3o6vK9H7sTXTmR3qMHgxmTO7J8V2ib-_efm0_VKsv7z-2F6vK8hpyZWU3MKO4UNB1VAhBJLCm-OekV70znDFLRS3VYBpbqE52TgpjhBysVNDXS_T6oHs9dzvXWzcVF6O-jn5n4p0Oxuu_O5Pf6HW41RSaWhTpJXp5FIjhZnYp651PtuxpJhfmpBshGJFK_RckghDS_AJf_ANuwxyncgVNCwSqIftvqwNkY0gpuuFkmYDeJ6xLwvqUcOGf_7nnb_oYaQGeHYBtyiGe-qxcUlFW_wQY86nj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217109617</pqid></control><display><type>article</type><title>Changes in Chromatin Structure and Mobility in Living Cells at Sites of DNA Double-Strand Breaks</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Kruhlak, Michael J. ; Celeste, Arkady ; Dellaire, Graham ; Fernandez-Capetillo, Oscar ; Müller, Waltraud G. ; McNally, James G. ; Bazett-Jones, David P. ; Nussenzweig, André</creator><creatorcontrib>Kruhlak, Michael J. ; Celeste, Arkady ; Dellaire, Graham ; Fernandez-Capetillo, Oscar ; Müller, Waltraud G. ; McNally, James G. ; Bazett-Jones, David P. ; Nussenzweig, André</creatorcontrib><description>The repair of DNA double-strand breaks (DSBs) is facilitated by the phosphorylation of H2AX, which organizes DNA damage signaling and chromatin remodeling complexes in the vicinity of the lesion (Pilch, D.R., O.A. Sedelnikova, C. Redon, A. Celeste, A. Nussenzweig, and W.M. Bonner. 2003. Biochem. Cell Biol. 81:123-129; Morrison, A.J., and X. Shen. 2005. Cell Cycle. 4:568-571; van Attikum, H., and S.M. Gasser. 2005. Nat. Rev. Mol. Cell. Biol. 6:757-765). The disruption of DNA integrity induces an alteration of chromatin architecture that has been proposed to activate the DNA damage transducing kinase ataxia telangiectasia mutated (ATM; Bakkenist, C.J., and M.B. Kastan. 2003. Nature. 421:499-506). However, little is known about the physical properties of damaged chromatin. In this study, we use a photoactivatable version of GFP-tagged histone H2B to examine the mobility and structure of chromatin containing DSBs in living cells. We find that chromatin containing DSBs exhibits limited mobility but undergoes an energy-dependent local expansion immediately after DNA damage. The localized expansion observed in real time corresponds to a 30-40% reduction in the density of chromatin fibers in the vicinity of DSBs, as measured by energy-filtering transmission electron microscopy. The observed opening of chromatin occurs independently of H2AX and ATM. We propose that localized adenosine triphosphate-dependent decondensation of chromatin at DSBs establishes an accessible subnuclear environment that facilitates DNA damage signaling and repair.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.200510015</identifier><identifier>PMID: 16520385</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; Cell lines ; Cell nucleus ; Cells, Cultured ; Cellular biology ; Chromatin ; Chromatin - chemistry ; Chromatin - genetics ; Chromatin - ultrastructure ; Chromosome Positioning - genetics ; DNA ; DNA - genetics ; DNA - ultrastructure ; DNA damage ; DNA Damage - genetics ; DNA Repair - genetics ; Energy Metabolism - genetics ; Enzymes ; Female ; Fibroblasts ; Fluorescence ; Green Fluorescent Proteins ; HeLa Cells ; Histones ; Histones - genetics ; Histones - metabolism ; Humans ; Irradiation ; Male ; Mice ; Mice, Knockout ; Microscopy, Electron, Transmission ; Proteins ; Signal Transduction - genetics ; Ultraviolet lasers</subject><ispartof>The Journal of cell biology, 2006-03, Vol.172 (6), p.823-834</ispartof><rights>Copyright 2006 The Rockefeller University Press</rights><rights>Copyright Rockefeller University Press Mar 13, 2006</rights><rights>Copyright © 2006, The Rockefeller University Press 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-c8bf4a95790bb27771804602151d9dea544c27389fa6c579b8be87aa78fc890d3</citedby><cites>FETCH-LOGICAL-c530t-c8bf4a95790bb27771804602151d9dea544c27389fa6c579b8be87aa78fc890d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16520385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kruhlak, Michael J.</creatorcontrib><creatorcontrib>Celeste, Arkady</creatorcontrib><creatorcontrib>Dellaire, Graham</creatorcontrib><creatorcontrib>Fernandez-Capetillo, Oscar</creatorcontrib><creatorcontrib>Müller, Waltraud G.</creatorcontrib><creatorcontrib>McNally, James G.</creatorcontrib><creatorcontrib>Bazett-Jones, David P.</creatorcontrib><creatorcontrib>Nussenzweig, André</creatorcontrib><title>Changes in Chromatin Structure and Mobility in Living Cells at Sites of DNA Double-Strand Breaks</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>The repair of DNA double-strand breaks (DSBs) is facilitated by the phosphorylation of H2AX, which organizes DNA damage signaling and chromatin remodeling complexes in the vicinity of the lesion (Pilch, D.R., O.A. Sedelnikova, C. Redon, A. Celeste, A. Nussenzweig, and W.M. Bonner. 2003. Biochem. Cell Biol. 81:123-129; Morrison, A.J., and X. Shen. 2005. Cell Cycle. 4:568-571; van Attikum, H., and S.M. Gasser. 2005. Nat. Rev. Mol. Cell. Biol. 6:757-765). The disruption of DNA integrity induces an alteration of chromatin architecture that has been proposed to activate the DNA damage transducing kinase ataxia telangiectasia mutated (ATM; Bakkenist, C.J., and M.B. Kastan. 2003. Nature. 421:499-506). However, little is known about the physical properties of damaged chromatin. In this study, we use a photoactivatable version of GFP-tagged histone H2B to examine the mobility and structure of chromatin containing DSBs in living cells. We find that chromatin containing DSBs exhibits limited mobility but undergoes an energy-dependent local expansion immediately after DNA damage. The localized expansion observed in real time corresponds to a 30-40% reduction in the density of chromatin fibers in the vicinity of DSBs, as measured by energy-filtering transmission electron microscopy. The observed opening of chromatin occurs independently of H2AX and ATM. We propose that localized adenosine triphosphate-dependent decondensation of chromatin at DSBs establishes an accessible subnuclear environment that facilitates DNA damage signaling and repair.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Cell lines</subject><subject>Cell nucleus</subject><subject>Cells, Cultured</subject><subject>Cellular biology</subject><subject>Chromatin</subject><subject>Chromatin - chemistry</subject><subject>Chromatin - genetics</subject><subject>Chromatin - ultrastructure</subject><subject>Chromosome Positioning - genetics</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA - ultrastructure</subject><subject>DNA damage</subject><subject>DNA Damage - genetics</subject><subject>DNA Repair - genetics</subject><subject>Energy Metabolism - genetics</subject><subject>Enzymes</subject><subject>Female</subject><subject>Fibroblasts</subject><subject>Fluorescence</subject><subject>Green Fluorescent Proteins</subject><subject>HeLa Cells</subject><subject>Histones</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Irradiation</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microscopy, Electron, Transmission</subject><subject>Proteins</subject><subject>Signal Transduction - genetics</subject><subject>Ultraviolet lasers</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2P0zAQxS0EYkvhyA0hiwO3LGPHju0L0pLlSypwWDgbx3FalzTetZ2V9r_HpVX5uHDySPOb5zfzEHpK4JyArF9tbXdOATgBIPweWhDOoJKEwX20AKCkUpzyM_QopS0AMMHqh-iMNJxCLfkCfW83Zlq7hP2E200MO5NLdZXjbPMcHTZTjz-Fzo8-3-2Zlb_10xq3bhwTNhlf-VyGw4AvP1_gyzB3o6vK9H7sTXTmR3qMHgxmTO7J8V2ib-_efm0_VKsv7z-2F6vK8hpyZWU3MKO4UNB1VAhBJLCm-OekV70znDFLRS3VYBpbqE52TgpjhBysVNDXS_T6oHs9dzvXWzcVF6O-jn5n4p0Oxuu_O5Pf6HW41RSaWhTpJXp5FIjhZnYp651PtuxpJhfmpBshGJFK_RckghDS_AJf_ANuwxyncgVNCwSqIftvqwNkY0gpuuFkmYDeJ6xLwvqUcOGf_7nnb_oYaQGeHYBtyiGe-qxcUlFW_wQY86nj</recordid><startdate>20060313</startdate><enddate>20060313</enddate><creator>Kruhlak, Michael J.</creator><creator>Celeste, Arkady</creator><creator>Dellaire, Graham</creator><creator>Fernandez-Capetillo, Oscar</creator><creator>Müller, Waltraud G.</creator><creator>McNally, James G.</creator><creator>Bazett-Jones, David P.</creator><creator>Nussenzweig, André</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060313</creationdate><title>Changes in Chromatin Structure and Mobility in Living Cells at Sites of DNA Double-Strand Breaks</title><author>Kruhlak, Michael J. ; Celeste, Arkady ; Dellaire, Graham ; Fernandez-Capetillo, Oscar ; Müller, Waltraud G. ; McNally, James G. ; Bazett-Jones, David P. ; Nussenzweig, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-c8bf4a95790bb27771804602151d9dea544c27389fa6c579b8be87aa78fc890d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Cell lines</topic><topic>Cell nucleus</topic><topic>Cells, Cultured</topic><topic>Cellular biology</topic><topic>Chromatin</topic><topic>Chromatin - chemistry</topic><topic>Chromatin - genetics</topic><topic>Chromatin - ultrastructure</topic><topic>Chromosome Positioning - genetics</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA - ultrastructure</topic><topic>DNA damage</topic><topic>DNA Damage - genetics</topic><topic>DNA Repair - genetics</topic><topic>Energy Metabolism - genetics</topic><topic>Enzymes</topic><topic>Female</topic><topic>Fibroblasts</topic><topic>Fluorescence</topic><topic>Green Fluorescent Proteins</topic><topic>HeLa Cells</topic><topic>Histones</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Irradiation</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microscopy, Electron, Transmission</topic><topic>Proteins</topic><topic>Signal Transduction - genetics</topic><topic>Ultraviolet lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kruhlak, Michael J.</creatorcontrib><creatorcontrib>Celeste, Arkady</creatorcontrib><creatorcontrib>Dellaire, Graham</creatorcontrib><creatorcontrib>Fernandez-Capetillo, Oscar</creatorcontrib><creatorcontrib>Müller, Waltraud G.</creatorcontrib><creatorcontrib>McNally, James G.</creatorcontrib><creatorcontrib>Bazett-Jones, David P.</creatorcontrib><creatorcontrib>Nussenzweig, André</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kruhlak, Michael J.</au><au>Celeste, Arkady</au><au>Dellaire, Graham</au><au>Fernandez-Capetillo, Oscar</au><au>Müller, Waltraud G.</au><au>McNally, James G.</au><au>Bazett-Jones, David P.</au><au>Nussenzweig, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Changes in Chromatin Structure and Mobility in Living Cells at Sites of DNA Double-Strand Breaks</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2006-03-13</date><risdate>2006</risdate><volume>172</volume><issue>6</issue><spage>823</spage><epage>834</epage><pages>823-834</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>The repair of DNA double-strand breaks (DSBs) is facilitated by the phosphorylation of H2AX, which organizes DNA damage signaling and chromatin remodeling complexes in the vicinity of the lesion (Pilch, D.R., O.A. Sedelnikova, C. Redon, A. Celeste, A. Nussenzweig, and W.M. Bonner. 2003. Biochem. Cell Biol. 81:123-129; Morrison, A.J., and X. Shen. 2005. Cell Cycle. 4:568-571; van Attikum, H., and S.M. Gasser. 2005. Nat. Rev. Mol. Cell. Biol. 6:757-765). The disruption of DNA integrity induces an alteration of chromatin architecture that has been proposed to activate the DNA damage transducing kinase ataxia telangiectasia mutated (ATM; Bakkenist, C.J., and M.B. Kastan. 2003. Nature. 421:499-506). However, little is known about the physical properties of damaged chromatin. In this study, we use a photoactivatable version of GFP-tagged histone H2B to examine the mobility and structure of chromatin containing DSBs in living cells. We find that chromatin containing DSBs exhibits limited mobility but undergoes an energy-dependent local expansion immediately after DNA damage. The localized expansion observed in real time corresponds to a 30-40% reduction in the density of chromatin fibers in the vicinity of DSBs, as measured by energy-filtering transmission electron microscopy. The observed opening of chromatin occurs independently of H2AX and ATM. We propose that localized adenosine triphosphate-dependent decondensation of chromatin at DSBs establishes an accessible subnuclear environment that facilitates DNA damage signaling and repair.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>16520385</pmid><doi>10.1083/jcb.200510015</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9525
ispartof The Journal of cell biology, 2006-03, Vol.172 (6), p.823-834
issn 0021-9525
1540-8140
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2063727
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Adenosine Triphosphate - metabolism
Animals
Cell lines
Cell nucleus
Cells, Cultured
Cellular biology
Chromatin
Chromatin - chemistry
Chromatin - genetics
Chromatin - ultrastructure
Chromosome Positioning - genetics
DNA
DNA - genetics
DNA - ultrastructure
DNA damage
DNA Damage - genetics
DNA Repair - genetics
Energy Metabolism - genetics
Enzymes
Female
Fibroblasts
Fluorescence
Green Fluorescent Proteins
HeLa Cells
Histones
Histones - genetics
Histones - metabolism
Humans
Irradiation
Male
Mice
Mice, Knockout
Microscopy, Electron, Transmission
Proteins
Signal Transduction - genetics
Ultraviolet lasers
title Changes in Chromatin Structure and Mobility in Living Cells at Sites of DNA Double-Strand Breaks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Changes%20in%20Chromatin%20Structure%20and%20Mobility%20in%20Living%20Cells%20at%20Sites%20of%20DNA%20Double-Strand%20Breaks&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Kruhlak,%20Michael%20J.&rft.date=2006-03-13&rft.volume=172&rft.issue=6&rft.spage=823&rft.epage=834&rft.pages=823-834&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.200510015&rft_dat=%3Cjstor_pubme%3E4151924%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217109617&rft_id=info:pmid/16520385&rft_jstor_id=4151924&rfr_iscdi=true