Automation of random conical tilt and orthogonal tilt data collection using feature-based correlation

Visualization by electron microscopy has provided many insights into the composition, quaternary structure, and mechanism of macromolecular assemblies. By preserving samples in stain or vitreous ice it is possible to image them as discrete particles, and from these images generate three-dimensional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural biology 2007-09, Vol.159 (3), p.335-346
Hauptverfasser: Yoshioka, Craig, Pulokas, James, Fellmann, Denis, Potter, Clinton S., Milligan, Ronald A., Carragher, Bridget
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 346
container_issue 3
container_start_page 335
container_title Journal of structural biology
container_volume 159
creator Yoshioka, Craig
Pulokas, James
Fellmann, Denis
Potter, Clinton S.
Milligan, Ronald A.
Carragher, Bridget
description Visualization by electron microscopy has provided many insights into the composition, quaternary structure, and mechanism of macromolecular assemblies. By preserving samples in stain or vitreous ice it is possible to image them as discrete particles, and from these images generate three-dimensional structures. This ‘single-particle’ approach suffers from two major shortcomings; it requires an initial model to reconstitute 2D data into a 3D volume, and it often fails when faced with conformational variability. Random conical tilt (RCT) and orthogonal tilt (OTR) are methods developed to overcome these problems, but the data collection required, particularly for vitreous ice specimens, is difficult and tedious. In this paper, we present an automated approach to RCT/OTR data collection that removes the burden of manual collection and offers higher quality and throughput than is otherwise possible. We show example datasets collected under stain and cryo conditions and provide statistics related to the efficiency and robustness of the process. Furthermore, we describe the new algorithms that make this method possible, which include new calibrations, improved targeting and feature-based tracking.
doi_str_mv 10.1016/j.jsb.2007.03.005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2043090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1047847707000780</els_id><sourcerecordid>68255573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-d851709e4c18696db6bba887945e5d2d9ba46c3684df68caf49c2be094398bc33</originalsourceid><addsrcrecordid>eNp9kUuLFTEQhYMozkN_gBvplbtuk-48EYRhUEcYcKPrkE6q7-SSTsYkPeC_N3fu9bVxlVB1zqmiPoReETwQTPjb_bAv8zBiLAY8DRizJ-icYMV6yZl4evhT0UsqxBm6KGWPMaZkJM_RGRFspJxP5wiutppWU32KXVq6bKJLa2dT9NaErvpQu1bqUq53aZfir5oz1TRVCGAfrVvxcdctYOqWoZ9NAdfaOUN4jH6Bni0mFHh5ei_Rt48fvl7f9LdfPn2-vrrtLaWq9k4yIrACaonkiruZz7ORUijKgLnRqdlQbicuqVu4tGahyo4zYEUnJWc7TZfo_TH3fptXcBZizSbo--xXk3_oZLz-txP9nd6lBz1iOmGFW8CbU0BO3zcoVa--WAjBREhb0VyOjDFxmESOQptTKRmW30MI1gc4eq8bHH2Ao_GkG5zmef33dn8cJxpN8O4ogHajBw9ZF-shWnA-t0Nrl_x_4n8CNtmi7g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68255573</pqid></control><display><type>article</type><title>Automation of random conical tilt and orthogonal tilt data collection using feature-based correlation</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Yoshioka, Craig ; Pulokas, James ; Fellmann, Denis ; Potter, Clinton S. ; Milligan, Ronald A. ; Carragher, Bridget</creator><creatorcontrib>Yoshioka, Craig ; Pulokas, James ; Fellmann, Denis ; Potter, Clinton S. ; Milligan, Ronald A. ; Carragher, Bridget</creatorcontrib><description>Visualization by electron microscopy has provided many insights into the composition, quaternary structure, and mechanism of macromolecular assemblies. By preserving samples in stain or vitreous ice it is possible to image them as discrete particles, and from these images generate three-dimensional structures. This ‘single-particle’ approach suffers from two major shortcomings; it requires an initial model to reconstitute 2D data into a 3D volume, and it often fails when faced with conformational variability. Random conical tilt (RCT) and orthogonal tilt (OTR) are methods developed to overcome these problems, but the data collection required, particularly for vitreous ice specimens, is difficult and tedious. In this paper, we present an automated approach to RCT/OTR data collection that removes the burden of manual collection and offers higher quality and throughput than is otherwise possible. We show example datasets collected under stain and cryo conditions and provide statistics related to the efficiency and robustness of the process. Furthermore, we describe the new algorithms that make this method possible, which include new calibrations, improved targeting and feature-based tracking.</description><identifier>ISSN: 1047-8477</identifier><identifier>EISSN: 1095-8657</identifier><identifier>DOI: 10.1016/j.jsb.2007.03.005</identifier><identifier>PMID: 17524663</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Automation ; Cryo-electron microscopy ; Electron microscopy ; Microscopy, Electron, Transmission - methods ; Orthogonal tilt reconstruction ; Random conical tilt ; Software ; TEM</subject><ispartof>Journal of structural biology, 2007-09, Vol.159 (3), p.335-346</ispartof><rights>2007 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-d851709e4c18696db6bba887945e5d2d9ba46c3684df68caf49c2be094398bc33</citedby><cites>FETCH-LOGICAL-c449t-d851709e4c18696db6bba887945e5d2d9ba46c3684df68caf49c2be094398bc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsb.2007.03.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17524663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshioka, Craig</creatorcontrib><creatorcontrib>Pulokas, James</creatorcontrib><creatorcontrib>Fellmann, Denis</creatorcontrib><creatorcontrib>Potter, Clinton S.</creatorcontrib><creatorcontrib>Milligan, Ronald A.</creatorcontrib><creatorcontrib>Carragher, Bridget</creatorcontrib><title>Automation of random conical tilt and orthogonal tilt data collection using feature-based correlation</title><title>Journal of structural biology</title><addtitle>J Struct Biol</addtitle><description>Visualization by electron microscopy has provided many insights into the composition, quaternary structure, and mechanism of macromolecular assemblies. By preserving samples in stain or vitreous ice it is possible to image them as discrete particles, and from these images generate three-dimensional structures. This ‘single-particle’ approach suffers from two major shortcomings; it requires an initial model to reconstitute 2D data into a 3D volume, and it often fails when faced with conformational variability. Random conical tilt (RCT) and orthogonal tilt (OTR) are methods developed to overcome these problems, but the data collection required, particularly for vitreous ice specimens, is difficult and tedious. In this paper, we present an automated approach to RCT/OTR data collection that removes the burden of manual collection and offers higher quality and throughput than is otherwise possible. We show example datasets collected under stain and cryo conditions and provide statistics related to the efficiency and robustness of the process. Furthermore, we describe the new algorithms that make this method possible, which include new calibrations, improved targeting and feature-based tracking.</description><subject>Automation</subject><subject>Cryo-electron microscopy</subject><subject>Electron microscopy</subject><subject>Microscopy, Electron, Transmission - methods</subject><subject>Orthogonal tilt reconstruction</subject><subject>Random conical tilt</subject><subject>Software</subject><subject>TEM</subject><issn>1047-8477</issn><issn>1095-8657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUuLFTEQhYMozkN_gBvplbtuk-48EYRhUEcYcKPrkE6q7-SSTsYkPeC_N3fu9bVxlVB1zqmiPoReETwQTPjb_bAv8zBiLAY8DRizJ-icYMV6yZl4evhT0UsqxBm6KGWPMaZkJM_RGRFspJxP5wiutppWU32KXVq6bKJLa2dT9NaErvpQu1bqUq53aZfir5oz1TRVCGAfrVvxcdctYOqWoZ9NAdfaOUN4jH6Bni0mFHh5ei_Rt48fvl7f9LdfPn2-vrrtLaWq9k4yIrACaonkiruZz7ORUijKgLnRqdlQbicuqVu4tGahyo4zYEUnJWc7TZfo_TH3fptXcBZizSbo--xXk3_oZLz-txP9nd6lBz1iOmGFW8CbU0BO3zcoVa--WAjBREhb0VyOjDFxmESOQptTKRmW30MI1gc4eq8bHH2Ao_GkG5zmef33dn8cJxpN8O4ogHajBw9ZF-shWnA-t0Nrl_x_4n8CNtmi7g</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Yoshioka, Craig</creator><creator>Pulokas, James</creator><creator>Fellmann, Denis</creator><creator>Potter, Clinton S.</creator><creator>Milligan, Ronald A.</creator><creator>Carragher, Bridget</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070901</creationdate><title>Automation of random conical tilt and orthogonal tilt data collection using feature-based correlation</title><author>Yoshioka, Craig ; Pulokas, James ; Fellmann, Denis ; Potter, Clinton S. ; Milligan, Ronald A. ; Carragher, Bridget</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-d851709e4c18696db6bba887945e5d2d9ba46c3684df68caf49c2be094398bc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Automation</topic><topic>Cryo-electron microscopy</topic><topic>Electron microscopy</topic><topic>Microscopy, Electron, Transmission - methods</topic><topic>Orthogonal tilt reconstruction</topic><topic>Random conical tilt</topic><topic>Software</topic><topic>TEM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshioka, Craig</creatorcontrib><creatorcontrib>Pulokas, James</creatorcontrib><creatorcontrib>Fellmann, Denis</creatorcontrib><creatorcontrib>Potter, Clinton S.</creatorcontrib><creatorcontrib>Milligan, Ronald A.</creatorcontrib><creatorcontrib>Carragher, Bridget</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshioka, Craig</au><au>Pulokas, James</au><au>Fellmann, Denis</au><au>Potter, Clinton S.</au><au>Milligan, Ronald A.</au><au>Carragher, Bridget</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automation of random conical tilt and orthogonal tilt data collection using feature-based correlation</atitle><jtitle>Journal of structural biology</jtitle><addtitle>J Struct Biol</addtitle><date>2007-09-01</date><risdate>2007</risdate><volume>159</volume><issue>3</issue><spage>335</spage><epage>346</epage><pages>335-346</pages><issn>1047-8477</issn><eissn>1095-8657</eissn><abstract>Visualization by electron microscopy has provided many insights into the composition, quaternary structure, and mechanism of macromolecular assemblies. By preserving samples in stain or vitreous ice it is possible to image them as discrete particles, and from these images generate three-dimensional structures. This ‘single-particle’ approach suffers from two major shortcomings; it requires an initial model to reconstitute 2D data into a 3D volume, and it often fails when faced with conformational variability. Random conical tilt (RCT) and orthogonal tilt (OTR) are methods developed to overcome these problems, but the data collection required, particularly for vitreous ice specimens, is difficult and tedious. In this paper, we present an automated approach to RCT/OTR data collection that removes the burden of manual collection and offers higher quality and throughput than is otherwise possible. We show example datasets collected under stain and cryo conditions and provide statistics related to the efficiency and robustness of the process. Furthermore, we describe the new algorithms that make this method possible, which include new calibrations, improved targeting and feature-based tracking.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17524663</pmid><doi>10.1016/j.jsb.2007.03.005</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-8477
ispartof Journal of structural biology, 2007-09, Vol.159 (3), p.335-346
issn 1047-8477
1095-8657
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2043090
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Automation
Cryo-electron microscopy
Electron microscopy
Microscopy, Electron, Transmission - methods
Orthogonal tilt reconstruction
Random conical tilt
Software
TEM
title Automation of random conical tilt and orthogonal tilt data collection using feature-based correlation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automation%20of%20random%20conical%20tilt%20and%20orthogonal%20tilt%20data%20collection%20using%20feature-based%20correlation&rft.jtitle=Journal%20of%20structural%20biology&rft.au=Yoshioka,%20Craig&rft.date=2007-09-01&rft.volume=159&rft.issue=3&rft.spage=335&rft.epage=346&rft.pages=335-346&rft.issn=1047-8477&rft.eissn=1095-8657&rft_id=info:doi/10.1016/j.jsb.2007.03.005&rft_dat=%3Cproquest_pubme%3E68255573%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68255573&rft_id=info:pmid/17524663&rft_els_id=S1047847707000780&rfr_iscdi=true