Automation of random conical tilt and orthogonal tilt data collection using feature-based correlation
Visualization by electron microscopy has provided many insights into the composition, quaternary structure, and mechanism of macromolecular assemblies. By preserving samples in stain or vitreous ice it is possible to image them as discrete particles, and from these images generate three-dimensional...
Gespeichert in:
Veröffentlicht in: | Journal of structural biology 2007-09, Vol.159 (3), p.335-346 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 346 |
---|---|
container_issue | 3 |
container_start_page | 335 |
container_title | Journal of structural biology |
container_volume | 159 |
creator | Yoshioka, Craig Pulokas, James Fellmann, Denis Potter, Clinton S. Milligan, Ronald A. Carragher, Bridget |
description | Visualization by electron microscopy has provided many insights into the composition, quaternary structure, and mechanism of macromolecular assemblies. By preserving samples in stain or vitreous ice it is possible to image them as discrete particles, and from these images generate three-dimensional structures. This ‘single-particle’ approach suffers from two major shortcomings; it requires an initial model to reconstitute 2D data into a 3D volume, and it often fails when faced with conformational variability. Random conical tilt (RCT) and orthogonal tilt (OTR) are methods developed to overcome these problems, but the data collection required, particularly for vitreous ice specimens, is difficult and tedious. In this paper, we present an automated approach to RCT/OTR data collection that removes the burden of manual collection and offers higher quality and throughput than is otherwise possible. We show example datasets collected under stain and cryo conditions and provide statistics related to the efficiency and robustness of the process. Furthermore, we describe the new algorithms that make this method possible, which include new calibrations, improved targeting and feature-based tracking. |
doi_str_mv | 10.1016/j.jsb.2007.03.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2043090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1047847707000780</els_id><sourcerecordid>68255573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-d851709e4c18696db6bba887945e5d2d9ba46c3684df68caf49c2be094398bc33</originalsourceid><addsrcrecordid>eNp9kUuLFTEQhYMozkN_gBvplbtuk-48EYRhUEcYcKPrkE6q7-SSTsYkPeC_N3fu9bVxlVB1zqmiPoReETwQTPjb_bAv8zBiLAY8DRizJ-icYMV6yZl4evhT0UsqxBm6KGWPMaZkJM_RGRFspJxP5wiutppWU32KXVq6bKJLa2dT9NaErvpQu1bqUq53aZfir5oz1TRVCGAfrVvxcdctYOqWoZ9NAdfaOUN4jH6Bni0mFHh5ei_Rt48fvl7f9LdfPn2-vrrtLaWq9k4yIrACaonkiruZz7ORUijKgLnRqdlQbicuqVu4tGahyo4zYEUnJWc7TZfo_TH3fptXcBZizSbo--xXk3_oZLz-txP9nd6lBz1iOmGFW8CbU0BO3zcoVa--WAjBREhb0VyOjDFxmESOQptTKRmW30MI1gc4eq8bHH2Ao_GkG5zmef33dn8cJxpN8O4ogHajBw9ZF-shWnA-t0Nrl_x_4n8CNtmi7g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68255573</pqid></control><display><type>article</type><title>Automation of random conical tilt and orthogonal tilt data collection using feature-based correlation</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Yoshioka, Craig ; Pulokas, James ; Fellmann, Denis ; Potter, Clinton S. ; Milligan, Ronald A. ; Carragher, Bridget</creator><creatorcontrib>Yoshioka, Craig ; Pulokas, James ; Fellmann, Denis ; Potter, Clinton S. ; Milligan, Ronald A. ; Carragher, Bridget</creatorcontrib><description>Visualization by electron microscopy has provided many insights into the composition, quaternary structure, and mechanism of macromolecular assemblies. By preserving samples in stain or vitreous ice it is possible to image them as discrete particles, and from these images generate three-dimensional structures. This ‘single-particle’ approach suffers from two major shortcomings; it requires an initial model to reconstitute 2D data into a 3D volume, and it often fails when faced with conformational variability. Random conical tilt (RCT) and orthogonal tilt (OTR) are methods developed to overcome these problems, but the data collection required, particularly for vitreous ice specimens, is difficult and tedious. In this paper, we present an automated approach to RCT/OTR data collection that removes the burden of manual collection and offers higher quality and throughput than is otherwise possible. We show example datasets collected under stain and cryo conditions and provide statistics related to the efficiency and robustness of the process. Furthermore, we describe the new algorithms that make this method possible, which include new calibrations, improved targeting and feature-based tracking.</description><identifier>ISSN: 1047-8477</identifier><identifier>EISSN: 1095-8657</identifier><identifier>DOI: 10.1016/j.jsb.2007.03.005</identifier><identifier>PMID: 17524663</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Automation ; Cryo-electron microscopy ; Electron microscopy ; Microscopy, Electron, Transmission - methods ; Orthogonal tilt reconstruction ; Random conical tilt ; Software ; TEM</subject><ispartof>Journal of structural biology, 2007-09, Vol.159 (3), p.335-346</ispartof><rights>2007 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-d851709e4c18696db6bba887945e5d2d9ba46c3684df68caf49c2be094398bc33</citedby><cites>FETCH-LOGICAL-c449t-d851709e4c18696db6bba887945e5d2d9ba46c3684df68caf49c2be094398bc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsb.2007.03.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17524663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshioka, Craig</creatorcontrib><creatorcontrib>Pulokas, James</creatorcontrib><creatorcontrib>Fellmann, Denis</creatorcontrib><creatorcontrib>Potter, Clinton S.</creatorcontrib><creatorcontrib>Milligan, Ronald A.</creatorcontrib><creatorcontrib>Carragher, Bridget</creatorcontrib><title>Automation of random conical tilt and orthogonal tilt data collection using feature-based correlation</title><title>Journal of structural biology</title><addtitle>J Struct Biol</addtitle><description>Visualization by electron microscopy has provided many insights into the composition, quaternary structure, and mechanism of macromolecular assemblies. By preserving samples in stain or vitreous ice it is possible to image them as discrete particles, and from these images generate three-dimensional structures. This ‘single-particle’ approach suffers from two major shortcomings; it requires an initial model to reconstitute 2D data into a 3D volume, and it often fails when faced with conformational variability. Random conical tilt (RCT) and orthogonal tilt (OTR) are methods developed to overcome these problems, but the data collection required, particularly for vitreous ice specimens, is difficult and tedious. In this paper, we present an automated approach to RCT/OTR data collection that removes the burden of manual collection and offers higher quality and throughput than is otherwise possible. We show example datasets collected under stain and cryo conditions and provide statistics related to the efficiency and robustness of the process. Furthermore, we describe the new algorithms that make this method possible, which include new calibrations, improved targeting and feature-based tracking.</description><subject>Automation</subject><subject>Cryo-electron microscopy</subject><subject>Electron microscopy</subject><subject>Microscopy, Electron, Transmission - methods</subject><subject>Orthogonal tilt reconstruction</subject><subject>Random conical tilt</subject><subject>Software</subject><subject>TEM</subject><issn>1047-8477</issn><issn>1095-8657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUuLFTEQhYMozkN_gBvplbtuk-48EYRhUEcYcKPrkE6q7-SSTsYkPeC_N3fu9bVxlVB1zqmiPoReETwQTPjb_bAv8zBiLAY8DRizJ-icYMV6yZl4evhT0UsqxBm6KGWPMaZkJM_RGRFspJxP5wiutppWU32KXVq6bKJLa2dT9NaErvpQu1bqUq53aZfir5oz1TRVCGAfrVvxcdctYOqWoZ9NAdfaOUN4jH6Bni0mFHh5ei_Rt48fvl7f9LdfPn2-vrrtLaWq9k4yIrACaonkiruZz7ORUijKgLnRqdlQbicuqVu4tGahyo4zYEUnJWc7TZfo_TH3fptXcBZizSbo--xXk3_oZLz-txP9nd6lBz1iOmGFW8CbU0BO3zcoVa--WAjBREhb0VyOjDFxmESOQptTKRmW30MI1gc4eq8bHH2Ao_GkG5zmef33dn8cJxpN8O4ogHajBw9ZF-shWnA-t0Nrl_x_4n8CNtmi7g</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Yoshioka, Craig</creator><creator>Pulokas, James</creator><creator>Fellmann, Denis</creator><creator>Potter, Clinton S.</creator><creator>Milligan, Ronald A.</creator><creator>Carragher, Bridget</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070901</creationdate><title>Automation of random conical tilt and orthogonal tilt data collection using feature-based correlation</title><author>Yoshioka, Craig ; Pulokas, James ; Fellmann, Denis ; Potter, Clinton S. ; Milligan, Ronald A. ; Carragher, Bridget</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-d851709e4c18696db6bba887945e5d2d9ba46c3684df68caf49c2be094398bc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Automation</topic><topic>Cryo-electron microscopy</topic><topic>Electron microscopy</topic><topic>Microscopy, Electron, Transmission - methods</topic><topic>Orthogonal tilt reconstruction</topic><topic>Random conical tilt</topic><topic>Software</topic><topic>TEM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshioka, Craig</creatorcontrib><creatorcontrib>Pulokas, James</creatorcontrib><creatorcontrib>Fellmann, Denis</creatorcontrib><creatorcontrib>Potter, Clinton S.</creatorcontrib><creatorcontrib>Milligan, Ronald A.</creatorcontrib><creatorcontrib>Carragher, Bridget</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshioka, Craig</au><au>Pulokas, James</au><au>Fellmann, Denis</au><au>Potter, Clinton S.</au><au>Milligan, Ronald A.</au><au>Carragher, Bridget</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automation of random conical tilt and orthogonal tilt data collection using feature-based correlation</atitle><jtitle>Journal of structural biology</jtitle><addtitle>J Struct Biol</addtitle><date>2007-09-01</date><risdate>2007</risdate><volume>159</volume><issue>3</issue><spage>335</spage><epage>346</epage><pages>335-346</pages><issn>1047-8477</issn><eissn>1095-8657</eissn><abstract>Visualization by electron microscopy has provided many insights into the composition, quaternary structure, and mechanism of macromolecular assemblies. By preserving samples in stain or vitreous ice it is possible to image them as discrete particles, and from these images generate three-dimensional structures. This ‘single-particle’ approach suffers from two major shortcomings; it requires an initial model to reconstitute 2D data into a 3D volume, and it often fails when faced with conformational variability. Random conical tilt (RCT) and orthogonal tilt (OTR) are methods developed to overcome these problems, but the data collection required, particularly for vitreous ice specimens, is difficult and tedious. In this paper, we present an automated approach to RCT/OTR data collection that removes the burden of manual collection and offers higher quality and throughput than is otherwise possible. We show example datasets collected under stain and cryo conditions and provide statistics related to the efficiency and robustness of the process. Furthermore, we describe the new algorithms that make this method possible, which include new calibrations, improved targeting and feature-based tracking.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17524663</pmid><doi>10.1016/j.jsb.2007.03.005</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-8477 |
ispartof | Journal of structural biology, 2007-09, Vol.159 (3), p.335-346 |
issn | 1047-8477 1095-8657 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2043090 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Automation Cryo-electron microscopy Electron microscopy Microscopy, Electron, Transmission - methods Orthogonal tilt reconstruction Random conical tilt Software TEM |
title | Automation of random conical tilt and orthogonal tilt data collection using feature-based correlation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automation%20of%20random%20conical%20tilt%20and%20orthogonal%20tilt%20data%20collection%20using%20feature-based%20correlation&rft.jtitle=Journal%20of%20structural%20biology&rft.au=Yoshioka,%20Craig&rft.date=2007-09-01&rft.volume=159&rft.issue=3&rft.spage=335&rft.epage=346&rft.pages=335-346&rft.issn=1047-8477&rft.eissn=1095-8657&rft_id=info:doi/10.1016/j.jsb.2007.03.005&rft_dat=%3Cproquest_pubme%3E68255573%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68255573&rft_id=info:pmid/17524663&rft_els_id=S1047847707000780&rfr_iscdi=true |