Ionic Current Blockades from DNA and RNA Molecules in the α-Hemolysin Nanopore
We characterize the substate structure of current blockades produced when single-stranded polynucleotide molecules were electrophoretically driven into the α-hemolysin protein pore. We frequently observe substates where the ionic current is reduced by ∼50%. Most of these substates can be associated...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2007-11, Vol.93 (9), p.3229-3240 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3240 |
---|---|
container_issue | 9 |
container_start_page | 3229 |
container_title | Biophysical journal |
container_volume | 93 |
creator | Butler, Tom Z. Gundlach, Jens H. Troll, Mark |
description | We characterize the substate structure of current blockades produced when single-stranded polynucleotide molecules were electrophoretically driven into the
α-hemolysin protein pore. We frequently observe substates where the ionic current is reduced by ∼50%. Most of these substates can be associated with a molecular configuration where a polymer occupies only the vestibule region of the pore, though a few appear related to a polymer occupying only the transmembrane
β-barrel region of the pore. The duration of the vestibule configuration depends on polymer composition and on which end of the polymer, 3′ or 5′, subsequently threads into the narrowest constriction and initiates translocation. Below ∼140
mV a polymer is more likely to escape from the vestibule against the applied voltage gradient, while at higher voltages a polymer is more likely to follow the voltage gradient by threading through the narrowest constriction and translocating through the pore. Increasing the applied voltage also increases the duration of the vestibule configuration. A semiquantitative model of these trends suggests that escape has stronger voltage dependence than threading, and that threading is sensitive to polymer orientation while escape is not. These results emphasize the utility of
α-hemolysin as a model system to study biologically relevant physical and chemical processes at the single-molecule level. |
doi_str_mv | 10.1529/biophysj.107.107003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2025643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000634950771576X</els_id><sourcerecordid>864418842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-55944c89c601150f3b13494832b7274147da3f623dca3311c0bcf39274372a393</originalsourceid><addsrcrecordid>eNp9Uctu2zAQJIoEjZP2CwoUOiUnJcunpEMLJE7bBEgdoGjPBEWtaqaS6JBSAH9WfqTfVBp2XxcfiAV2ZmdnOYS8oXBOJasuaudXy3V8OKdQbB4Af0FmVAqWA5TqgMwAQOVcVPKIHMf4AECZBPqSHNFCFZILNSP3t35wNptPIeAwZledtz9MgzFrg--z68VlZoYm-5LqZ9-hnboEuSEbl5j9fM5vsPfdOqbGwgx-5QO-Ioet6SK-3tUT8u3jh6_zm_zu_tPt_PIut6KsxlzKSghbVlYBpRJaXtPkU5Sc1QUrBBVFY3irGG-s4ZxSC7VteZUgXjDDK35C3m91V1PdY2OT-WA6vQquN2GtvXH6f2RwS_3dP2kGTCrBk8DZTiD4xwnjqHsXLXadGdBPUZdKCFqWgiXm6V6mKkU6gm088S3RBh9jwPaPHQp6E5n-HVlqFHobWZp6--8lf2d2GSXCuy0B038-OQw6WoeDxcYFtKNuvNu74BdVy6iL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68401129</pqid></control><display><type>article</type><title>Ionic Current Blockades from DNA and RNA Molecules in the α-Hemolysin Nanopore</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Butler, Tom Z. ; Gundlach, Jens H. ; Troll, Mark</creator><creatorcontrib>Butler, Tom Z. ; Gundlach, Jens H. ; Troll, Mark</creatorcontrib><description>We characterize the substate structure of current blockades produced when single-stranded polynucleotide molecules were electrophoretically driven into the
α-hemolysin protein pore. We frequently observe substates where the ionic current is reduced by ∼50%. Most of these substates can be associated with a molecular configuration where a polymer occupies only the vestibule region of the pore, though a few appear related to a polymer occupying only the transmembrane
β-barrel region of the pore. The duration of the vestibule configuration depends on polymer composition and on which end of the polymer, 3′ or 5′, subsequently threads into the narrowest constriction and initiates translocation. Below ∼140
mV a polymer is more likely to escape from the vestibule against the applied voltage gradient, while at higher voltages a polymer is more likely to follow the voltage gradient by threading through the narrowest constriction and translocating through the pore. Increasing the applied voltage also increases the duration of the vestibule configuration. A semiquantitative model of these trends suggests that escape has stronger voltage dependence than threading, and that threading is sensitive to polymer orientation while escape is not. These results emphasize the utility of
α-hemolysin as a model system to study biologically relevant physical and chemical processes at the single-molecule level.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.107.107003</identifier><identifier>PMID: 17675346</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bacterial Toxins - chemistry ; DNA - chemistry ; DNA - metabolism ; Hemolysin Proteins - chemistry ; Hemolysin Proteins - physiology ; Models, Chemical ; Models, Molecular ; Nanostructures - chemistry ; Nucleic Acid Conformation ; Nucleic Acids ; RNA - chemistry ; RNA - metabolism</subject><ispartof>Biophysical journal, 2007-11, Vol.93 (9), p.3229-3240</ispartof><rights>2007 The Biophysical Society</rights><rights>Copyright © 2007, Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-55944c89c601150f3b13494832b7274147da3f623dca3311c0bcf39274372a393</citedby><cites>FETCH-LOGICAL-c489t-55944c89c601150f3b13494832b7274147da3f623dca3311c0bcf39274372a393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2025643/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S000634950771576X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17675346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Butler, Tom Z.</creatorcontrib><creatorcontrib>Gundlach, Jens H.</creatorcontrib><creatorcontrib>Troll, Mark</creatorcontrib><title>Ionic Current Blockades from DNA and RNA Molecules in the α-Hemolysin Nanopore</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>We characterize the substate structure of current blockades produced when single-stranded polynucleotide molecules were electrophoretically driven into the
α-hemolysin protein pore. We frequently observe substates where the ionic current is reduced by ∼50%. Most of these substates can be associated with a molecular configuration where a polymer occupies only the vestibule region of the pore, though a few appear related to a polymer occupying only the transmembrane
β-barrel region of the pore. The duration of the vestibule configuration depends on polymer composition and on which end of the polymer, 3′ or 5′, subsequently threads into the narrowest constriction and initiates translocation. Below ∼140
mV a polymer is more likely to escape from the vestibule against the applied voltage gradient, while at higher voltages a polymer is more likely to follow the voltage gradient by threading through the narrowest constriction and translocating through the pore. Increasing the applied voltage also increases the duration of the vestibule configuration. A semiquantitative model of these trends suggests that escape has stronger voltage dependence than threading, and that threading is sensitive to polymer orientation while escape is not. These results emphasize the utility of
α-hemolysin as a model system to study biologically relevant physical and chemical processes at the single-molecule level.</description><subject>Bacterial Toxins - chemistry</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>Hemolysin Proteins - chemistry</subject><subject>Hemolysin Proteins - physiology</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Nanostructures - chemistry</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic Acids</subject><subject>RNA - chemistry</subject><subject>RNA - metabolism</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Uctu2zAQJIoEjZP2CwoUOiUnJcunpEMLJE7bBEgdoGjPBEWtaqaS6JBSAH9WfqTfVBp2XxcfiAV2ZmdnOYS8oXBOJasuaudXy3V8OKdQbB4Af0FmVAqWA5TqgMwAQOVcVPKIHMf4AECZBPqSHNFCFZILNSP3t35wNptPIeAwZledtz9MgzFrg--z68VlZoYm-5LqZ9-hnboEuSEbl5j9fM5vsPfdOqbGwgx-5QO-Ioet6SK-3tUT8u3jh6_zm_zu_tPt_PIut6KsxlzKSghbVlYBpRJaXtPkU5Sc1QUrBBVFY3irGG-s4ZxSC7VteZUgXjDDK35C3m91V1PdY2OT-WA6vQquN2GtvXH6f2RwS_3dP2kGTCrBk8DZTiD4xwnjqHsXLXadGdBPUZdKCFqWgiXm6V6mKkU6gm088S3RBh9jwPaPHQp6E5n-HVlqFHobWZp6--8lf2d2GSXCuy0B038-OQw6WoeDxcYFtKNuvNu74BdVy6iL</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Butler, Tom Z.</creator><creator>Gundlach, Jens H.</creator><creator>Troll, Mark</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>20071101</creationdate><title>Ionic Current Blockades from DNA and RNA Molecules in the α-Hemolysin Nanopore</title><author>Butler, Tom Z. ; Gundlach, Jens H. ; Troll, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-55944c89c601150f3b13494832b7274147da3f623dca3311c0bcf39274372a393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bacterial Toxins - chemistry</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>Hemolysin Proteins - chemistry</topic><topic>Hemolysin Proteins - physiology</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Nanostructures - chemistry</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic Acids</topic><topic>RNA - chemistry</topic><topic>RNA - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butler, Tom Z.</creatorcontrib><creatorcontrib>Gundlach, Jens H.</creatorcontrib><creatorcontrib>Troll, Mark</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butler, Tom Z.</au><au>Gundlach, Jens H.</au><au>Troll, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionic Current Blockades from DNA and RNA Molecules in the α-Hemolysin Nanopore</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2007-11-01</date><risdate>2007</risdate><volume>93</volume><issue>9</issue><spage>3229</spage><epage>3240</epage><pages>3229-3240</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>We characterize the substate structure of current blockades produced when single-stranded polynucleotide molecules were electrophoretically driven into the
α-hemolysin protein pore. We frequently observe substates where the ionic current is reduced by ∼50%. Most of these substates can be associated with a molecular configuration where a polymer occupies only the vestibule region of the pore, though a few appear related to a polymer occupying only the transmembrane
β-barrel region of the pore. The duration of the vestibule configuration depends on polymer composition and on which end of the polymer, 3′ or 5′, subsequently threads into the narrowest constriction and initiates translocation. Below ∼140
mV a polymer is more likely to escape from the vestibule against the applied voltage gradient, while at higher voltages a polymer is more likely to follow the voltage gradient by threading through the narrowest constriction and translocating through the pore. Increasing the applied voltage also increases the duration of the vestibule configuration. A semiquantitative model of these trends suggests that escape has stronger voltage dependence than threading, and that threading is sensitive to polymer orientation while escape is not. These results emphasize the utility of
α-hemolysin as a model system to study biologically relevant physical and chemical processes at the single-molecule level.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17675346</pmid><doi>10.1529/biophysj.107.107003</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2007-11, Vol.93 (9), p.3229-3240 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2025643 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Bacterial Toxins - chemistry DNA - chemistry DNA - metabolism Hemolysin Proteins - chemistry Hemolysin Proteins - physiology Models, Chemical Models, Molecular Nanostructures - chemistry Nucleic Acid Conformation Nucleic Acids RNA - chemistry RNA - metabolism |
title | Ionic Current Blockades from DNA and RNA Molecules in the α-Hemolysin Nanopore |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A38%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionic%20Current%20Blockades%20from%20DNA%20and%20RNA%20Molecules%20in%20the%20%CE%B1-Hemolysin%20Nanopore&rft.jtitle=Biophysical%20journal&rft.au=Butler,%20Tom%20Z.&rft.date=2007-11-01&rft.volume=93&rft.issue=9&rft.spage=3229&rft.epage=3240&rft.pages=3229-3240&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.107.107003&rft_dat=%3Cproquest_pubme%3E864418842%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68401129&rft_id=info:pmid/17675346&rft_els_id=S000634950771576X&rfr_iscdi=true |