Choline Transport and de novo Choline Synthesis Support Acetylcholine Biosynthesis in Caenorhabditis elegans Cholinergic Neurons
The cho-1 gene in Caenorhabditis elegans encodes a high-affinity plasma-membrane choline transporter believed to be rate limiting for acetylcholine (ACh) synthesis in cholinergic nerve terminals. We found that CHO-1 is expressed in most, but not all cholinergic neurons in C. elegans. cho-1 null muta...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2007-09, Vol.177 (1), p.195-204 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The cho-1 gene in Caenorhabditis elegans encodes a high-affinity plasma-membrane choline transporter believed to be rate limiting for acetylcholine (ACh) synthesis in cholinergic nerve terminals. We found that CHO-1 is expressed in most, but not all cholinergic neurons in C. elegans. cho-1 null mutants are viable and exhibit mild deficits in cholinergic behavior; they are slightly resistant to the acetylcholinesterase inhibitor aldicarb, and they exhibit reduced swimming rates in liquid. cho-1 mutants also fail to sustain swimming behavior; over a 33-min time course, cho-1 mutants slow down or stop swimming, whereas wild-type animals sustain the initial rate of swimming over the duration of the experiment. A functional CHO-1GFP fusion protein rescues these cho-1 mutant phenotypes and is enriched at cholinergic synapses. Although cho-1 mutants clearly exhibit defects in cholinergic behaviors, the loss of cho-1 function has surprisingly mild effects on cholinergic neurotransmission. However, reducing endogenous choline synthesis strongly enhances the phenotype of cho-1 mutants, giving rise to a synthetic uncoordinated phenotype. Our results indicate that both choline transport and de novo synthesis provide choline for ACh synthesis in C. elegans cholinergic neurons. |
---|---|
ISSN: | 0016-6731 1943-2631 1943-2631 |
DOI: | 10.1534/genetics.107.074120 |