Analysis of oxygen metabolism implies a neural origin for the negative BOLD response in human visual cortex

The sustained negative blood oxygenation level-dependent (BOLD) response in functional MRI is observed universally, but its interpretation is controversial. The origin of the negative response is of fundamental importance because it could provide a measurement of neural deactivation. However, a subs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2007-06, Vol.36 (2), p.269-276
Hauptverfasser: Pasley, Brian N., Inglis, Ben A., Freeman, Ralph D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 276
container_issue 2
container_start_page 269
container_title NeuroImage (Orlando, Fla.)
container_volume 36
creator Pasley, Brian N.
Inglis, Ben A.
Freeman, Ralph D.
description The sustained negative blood oxygenation level-dependent (BOLD) response in functional MRI is observed universally, but its interpretation is controversial. The origin of the negative response is of fundamental importance because it could provide a measurement of neural deactivation. However, a substantial component of the negative response may be due to a non-neural hemodynamic artifact. To distinguish these possibilities, we have measured evoked BOLD, cerebral blood flow (CBF), and oxygen metabolism responses to a fixed visual stimulus from two different baseline conditions. One is a normal resting baseline, and the other is a lower baseline induced by a sustained negative response. For both baseline conditions, CBF and oxygen metabolism responses reach the same peak amplitude. Consequently, evoked responses from the negative baseline are larger than those from the resting baseline. The larger metabolic response from negative baseline presumably reflects a greater neural response that is required to reach the same peak amplitude as that from resting baseline. Furthermore, the ratio of CBF to oxygen metabolism remains approximately the same from both baseline states (∼2:1). This tight coupling between hemodynamic and metabolic components implies that the magnitude of any hemodynamic artifact is inconsequential. We conclude that the negative response is a functionally significant index of neural deactivation in early visual cortex.
doi_str_mv 10.1016/j.neuroimage.2006.09.015
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2001204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811906009608</els_id><sourcerecordid>70506432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-9b0cc8ed6c51e99f1e5df06f2a9803615f777c70d5ba2c479422a2552f03fed83</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSMEoqXwF5AlJG4JYyeO4wtSW6BFWqkXOFteZ5z1ktiLnay6_x6vdkWBCydbnm9mnt8rCkKhokDbD9vK4xKDm_SAFQNoK5AVUP6suKQgeSm5YM-Pd16XHaXyoniV0hYAJG26l8UFFZTWNa0vix_XXo-H5BIJloTHw4CeTDjrdRhdmoibdqPDRDQ5LtQjCdENzhMbIpk3mF8HPbs9kpuH1ScSMe2CT0gysVkm7cnepSV3mRBnfHxdvLB6TPjmfF4V3798_nZ7X64e7r7eXq9Kw4HPpVyDMR32reEUpbQUeW-htUzLDuqWciuEMAJ6vtbMNEI2jGnGObNQW-y7-qr4eJq7W9YT9gb9nKWrXcx-xYMK2qm_K95t1BD2KjtJGTR5wPvzgBh-LphmNblkcBy1x7AkJYBD29Qsg-_-AbdhidnRpGhGBKs5FZnqTpSJIaWI9rcUCuqYp9qqpzyPKloFUuU8c-vbP7_y1HgOMAM3JwCzoXuHUSXj0BvsXUQzqz64_2_5BWv0uKM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506723517</pqid></control><display><type>article</type><title>Analysis of oxygen metabolism implies a neural origin for the negative BOLD response in human visual cortex</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Pasley, Brian N. ; Inglis, Ben A. ; Freeman, Ralph D.</creator><creatorcontrib>Pasley, Brian N. ; Inglis, Ben A. ; Freeman, Ralph D.</creatorcontrib><description>The sustained negative blood oxygenation level-dependent (BOLD) response in functional MRI is observed universally, but its interpretation is controversial. The origin of the negative response is of fundamental importance because it could provide a measurement of neural deactivation. However, a substantial component of the negative response may be due to a non-neural hemodynamic artifact. To distinguish these possibilities, we have measured evoked BOLD, cerebral blood flow (CBF), and oxygen metabolism responses to a fixed visual stimulus from two different baseline conditions. One is a normal resting baseline, and the other is a lower baseline induced by a sustained negative response. For both baseline conditions, CBF and oxygen metabolism responses reach the same peak amplitude. Consequently, evoked responses from the negative baseline are larger than those from the resting baseline. The larger metabolic response from negative baseline presumably reflects a greater neural response that is required to reach the same peak amplitude as that from resting baseline. Furthermore, the ratio of CBF to oxygen metabolism remains approximately the same from both baseline states (∼2:1). This tight coupling between hemodynamic and metabolic components implies that the magnitude of any hemodynamic artifact is inconsequential. We conclude that the negative response is a functionally significant index of neural deactivation in early visual cortex.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2006.09.015</identifier><identifier>PMID: 17113313</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Brain ; Brain Mapping - methods ; Cerebrovascular Circulation - physiology ; Evoked Potentials, Visual - physiology ; Experiments ; Female ; Humans ; Image Interpretation, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Metabolism ; Neural Inhibition - physiology ; NMR ; Nuclear magnetic resonance ; Oxygen - metabolism ; Oxygen Consumption - physiology ; Photic Stimulation - methods ; Reference Values ; Scholarships &amp; fellowships ; Visual Cortex - blood supply ; Visual Cortex - physiology</subject><ispartof>NeuroImage (Orlando, Fla.), 2007-06, Vol.36 (2), p.269-276</ispartof><rights>2006 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Jun 1, 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-9b0cc8ed6c51e99f1e5df06f2a9803615f777c70d5ba2c479422a2552f03fed83</citedby><cites>FETCH-LOGICAL-c505t-9b0cc8ed6c51e99f1e5df06f2a9803615f777c70d5ba2c479422a2552f03fed83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1506723517?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974,64362,64364,64366,72216</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17113313$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pasley, Brian N.</creatorcontrib><creatorcontrib>Inglis, Ben A.</creatorcontrib><creatorcontrib>Freeman, Ralph D.</creatorcontrib><title>Analysis of oxygen metabolism implies a neural origin for the negative BOLD response in human visual cortex</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>The sustained negative blood oxygenation level-dependent (BOLD) response in functional MRI is observed universally, but its interpretation is controversial. The origin of the negative response is of fundamental importance because it could provide a measurement of neural deactivation. However, a substantial component of the negative response may be due to a non-neural hemodynamic artifact. To distinguish these possibilities, we have measured evoked BOLD, cerebral blood flow (CBF), and oxygen metabolism responses to a fixed visual stimulus from two different baseline conditions. One is a normal resting baseline, and the other is a lower baseline induced by a sustained negative response. For both baseline conditions, CBF and oxygen metabolism responses reach the same peak amplitude. Consequently, evoked responses from the negative baseline are larger than those from the resting baseline. The larger metabolic response from negative baseline presumably reflects a greater neural response that is required to reach the same peak amplitude as that from resting baseline. Furthermore, the ratio of CBF to oxygen metabolism remains approximately the same from both baseline states (∼2:1). This tight coupling between hemodynamic and metabolic components implies that the magnitude of any hemodynamic artifact is inconsequential. We conclude that the negative response is a functionally significant index of neural deactivation in early visual cortex.</description><subject>Adult</subject><subject>Brain</subject><subject>Brain Mapping - methods</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Evoked Potentials, Visual - physiology</subject><subject>Experiments</subject><subject>Female</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Metabolism</subject><subject>Neural Inhibition - physiology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oxygen - metabolism</subject><subject>Oxygen Consumption - physiology</subject><subject>Photic Stimulation - methods</subject><subject>Reference Values</subject><subject>Scholarships &amp; fellowships</subject><subject>Visual Cortex - blood supply</subject><subject>Visual Cortex - physiology</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUFv1DAQhSMEoqXwF5AlJG4JYyeO4wtSW6BFWqkXOFteZ5z1ktiLnay6_x6vdkWBCydbnm9mnt8rCkKhokDbD9vK4xKDm_SAFQNoK5AVUP6suKQgeSm5YM-Pd16XHaXyoniV0hYAJG26l8UFFZTWNa0vix_XXo-H5BIJloTHw4CeTDjrdRhdmoibdqPDRDQ5LtQjCdENzhMbIpk3mF8HPbs9kpuH1ScSMe2CT0gysVkm7cnepSV3mRBnfHxdvLB6TPjmfF4V3798_nZ7X64e7r7eXq9Kw4HPpVyDMR32reEUpbQUeW-htUzLDuqWciuEMAJ6vtbMNEI2jGnGObNQW-y7-qr4eJq7W9YT9gb9nKWrXcx-xYMK2qm_K95t1BD2KjtJGTR5wPvzgBh-LphmNblkcBy1x7AkJYBD29Qsg-_-AbdhidnRpGhGBKs5FZnqTpSJIaWI9rcUCuqYp9qqpzyPKloFUuU8c-vbP7_y1HgOMAM3JwCzoXuHUSXj0BvsXUQzqz64_2_5BWv0uKM</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Pasley, Brian N.</creator><creator>Inglis, Ben A.</creator><creator>Freeman, Ralph D.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070601</creationdate><title>Analysis of oxygen metabolism implies a neural origin for the negative BOLD response in human visual cortex</title><author>Pasley, Brian N. ; Inglis, Ben A. ; Freeman, Ralph D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-9b0cc8ed6c51e99f1e5df06f2a9803615f777c70d5ba2c479422a2552f03fed83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adult</topic><topic>Brain</topic><topic>Brain Mapping - methods</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Evoked Potentials, Visual - physiology</topic><topic>Experiments</topic><topic>Female</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Metabolism</topic><topic>Neural Inhibition - physiology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oxygen - metabolism</topic><topic>Oxygen Consumption - physiology</topic><topic>Photic Stimulation - methods</topic><topic>Reference Values</topic><topic>Scholarships &amp; fellowships</topic><topic>Visual Cortex - blood supply</topic><topic>Visual Cortex - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pasley, Brian N.</creatorcontrib><creatorcontrib>Inglis, Ben A.</creatorcontrib><creatorcontrib>Freeman, Ralph D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pasley, Brian N.</au><au>Inglis, Ben A.</au><au>Freeman, Ralph D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of oxygen metabolism implies a neural origin for the negative BOLD response in human visual cortex</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2007-06-01</date><risdate>2007</risdate><volume>36</volume><issue>2</issue><spage>269</spage><epage>276</epage><pages>269-276</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>The sustained negative blood oxygenation level-dependent (BOLD) response in functional MRI is observed universally, but its interpretation is controversial. The origin of the negative response is of fundamental importance because it could provide a measurement of neural deactivation. However, a substantial component of the negative response may be due to a non-neural hemodynamic artifact. To distinguish these possibilities, we have measured evoked BOLD, cerebral blood flow (CBF), and oxygen metabolism responses to a fixed visual stimulus from two different baseline conditions. One is a normal resting baseline, and the other is a lower baseline induced by a sustained negative response. For both baseline conditions, CBF and oxygen metabolism responses reach the same peak amplitude. Consequently, evoked responses from the negative baseline are larger than those from the resting baseline. The larger metabolic response from negative baseline presumably reflects a greater neural response that is required to reach the same peak amplitude as that from resting baseline. Furthermore, the ratio of CBF to oxygen metabolism remains approximately the same from both baseline states (∼2:1). This tight coupling between hemodynamic and metabolic components implies that the magnitude of any hemodynamic artifact is inconsequential. We conclude that the negative response is a functionally significant index of neural deactivation in early visual cortex.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17113313</pmid><doi>10.1016/j.neuroimage.2006.09.015</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2007-06, Vol.36 (2), p.269-276
issn 1053-8119
1095-9572
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2001204
source MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland
subjects Adult
Brain
Brain Mapping - methods
Cerebrovascular Circulation - physiology
Evoked Potentials, Visual - physiology
Experiments
Female
Humans
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Metabolism
Neural Inhibition - physiology
NMR
Nuclear magnetic resonance
Oxygen - metabolism
Oxygen Consumption - physiology
Photic Stimulation - methods
Reference Values
Scholarships & fellowships
Visual Cortex - blood supply
Visual Cortex - physiology
title Analysis of oxygen metabolism implies a neural origin for the negative BOLD response in human visual cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A38%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20oxygen%20metabolism%20implies%20a%20neural%20origin%20for%20the%20negative%20BOLD%20response%20in%20human%20visual%20cortex&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Pasley,%20Brian%20N.&rft.date=2007-06-01&rft.volume=36&rft.issue=2&rft.spage=269&rft.epage=276&rft.pages=269-276&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2006.09.015&rft_dat=%3Cproquest_pubme%3E70506432%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506723517&rft_id=info:pmid/17113313&rft_els_id=S1053811906009608&rfr_iscdi=true