Diffusion tensor imaging-based tissue segmentation: Validation and application to the developing child and adolescent brain
We present and validate a novel diffusion tensor imaging (DTI) approach for segmenting the human whole-brain into partitions representing grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF). The approach utilizes the contrast among tissue types in the DTI anisotropy vs. diffusivity rot...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2007-02, Vol.34 (4), p.1497-1505 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1505 |
---|---|
container_issue | 4 |
container_start_page | 1497 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 34 |
creator | Hasan, Khader M. Halphen, Christopher Sankar, Ambika Eluvathingal, Thomas J. Kramer, Larry Stuebing, Karla K. Ewing-Cobbs, Linda Fletcher, Jack M. |
description | We present and validate a novel diffusion tensor imaging (DTI) approach for segmenting the human whole-brain into partitions representing grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF). The approach utilizes the contrast among tissue types in the DTI anisotropy vs. diffusivity rotational invariant space. The DTI-based whole-brain GM and WM fractions (GMf and WMf) are contrasted with the fractions obtained from conventional magnetic resonance imaging (cMRI) tissue segmentation (or clustering) methods that utilized dual echo (proton density-weighted (PDw)), and spin–spin relaxation-weighted (T2w) contrast, in addition to spin-lattice relaxation weighted (T1w) contrasts acquired in the same imaging session and covering the same volume. In addition to good correspondence with cMRI estimates of brain volume, the DTI-based segmentation approach accurately depicts expected age vs. WM and GM volume-to-total intracranial brain volume percentage trends on the rapidly developing brains of a cohort of 29 children (6–18 years). This approach promises to extend DTI utility to both micro and macrostructural aspects of tissue organization. |
doi_str_mv | 10.1016/j.neuroimage.2006.10.029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1995007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811906010895</els_id><sourcerecordid>68980616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-acebb4b18427526f00af57fe54c8671d115f84072bb3f5174080e527ac96de5b3</originalsourceid><addsrcrecordid>eNqFkk2P0zAQhiMEYpeFv4AsIXFL8aTxFwckWD6llbgAV8uxJ62r1A52Ugnx53FIxQKXPXnsefx63vFUFQG6AQr8xWETcE7RH80ONw2lvBxvaKPuVZdAFasVE839JWbbWgKoi-pRzgdKqYJWPqwuQADnouWX1c-3vu_n7GMgE4YcE1lEfdjVncnoyORznpFk3B0xTGYq4EvyzQze_Y6JCY6YcRy8XfdTJNMeicMTDnEsOsTu_eBWzsUBsy06pEvGh8fVg94MGZ-c16vq6_t3X64_1jefP3y6fn1TW7blU20sdl3bgWwbwRreU2p6JnpkrZVcgANgvWypaLpu2zMQLZUUWSOMVdwh67ZX1atVd5y7I7qlgGQGPaZiNf3Q0Xj9byb4vd7FkwalGKWiCDw_C6T4fcY86aMvPobBBIxz1lwqSTnwO0FQHKQAWcBn_4GHOKdQuqCB0eJK0Hah5ErZFHNO2P-pGaheBkEf9O0g6GUQlkwZhHL16d-eby-ef74Ab1YAS-dPHpPO1mOw6HxCO2kX_d2v_AIe_8y_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506717048</pqid></control><display><type>article</type><title>Diffusion tensor imaging-based tissue segmentation: Validation and application to the developing child and adolescent brain</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hasan, Khader M. ; Halphen, Christopher ; Sankar, Ambika ; Eluvathingal, Thomas J. ; Kramer, Larry ; Stuebing, Karla K. ; Ewing-Cobbs, Linda ; Fletcher, Jack M.</creator><creatorcontrib>Hasan, Khader M. ; Halphen, Christopher ; Sankar, Ambika ; Eluvathingal, Thomas J. ; Kramer, Larry ; Stuebing, Karla K. ; Ewing-Cobbs, Linda ; Fletcher, Jack M.</creatorcontrib><description>We present and validate a novel diffusion tensor imaging (DTI) approach for segmenting the human whole-brain into partitions representing grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF). The approach utilizes the contrast among tissue types in the DTI anisotropy vs. diffusivity rotational invariant space. The DTI-based whole-brain GM and WM fractions (GMf and WMf) are contrasted with the fractions obtained from conventional magnetic resonance imaging (cMRI) tissue segmentation (or clustering) methods that utilized dual echo (proton density-weighted (PDw)), and spin–spin relaxation-weighted (T2w) contrast, in addition to spin-lattice relaxation weighted (T1w) contrasts acquired in the same imaging session and covering the same volume. In addition to good correspondence with cMRI estimates of brain volume, the DTI-based segmentation approach accurately depicts expected age vs. WM and GM volume-to-total intracranial brain volume percentage trends on the rapidly developing brains of a cohort of 29 children (6–18 years). This approach promises to extend DTI utility to both micro and macrostructural aspects of tissue organization.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2006.10.029</identifier><identifier>PMID: 17166746</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adolescent ; Adolescent Development ; Adult ; Age ; Aged ; Brain ; Brain - anatomy & histology ; Brain - growth & development ; Brain - pathology ; Brain - physiology ; Cerebrospinal Fluid ; Child ; Child brain development ; Child Development ; Child, Preschool ; Diffusion ; DTI ; Humans ; Icosa21 ; Image Processing, Computer-Assisted ; Magnetic Resonance Imaging - methods ; Meta analysis ; Methods ; Middle Aged ; Reference Values ; Reproducibility of Results ; Segmentation ; Studies</subject><ispartof>NeuroImage (Orlando, Fla.), 2007-02, Vol.34 (4), p.1497-1505</ispartof><rights>2006 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Feb 15, 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-acebb4b18427526f00af57fe54c8671d115f84072bb3f5174080e527ac96de5b3</citedby><cites>FETCH-LOGICAL-c536t-acebb4b18427526f00af57fe54c8671d115f84072bb3f5174080e527ac96de5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811906010895$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17166746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hasan, Khader M.</creatorcontrib><creatorcontrib>Halphen, Christopher</creatorcontrib><creatorcontrib>Sankar, Ambika</creatorcontrib><creatorcontrib>Eluvathingal, Thomas J.</creatorcontrib><creatorcontrib>Kramer, Larry</creatorcontrib><creatorcontrib>Stuebing, Karla K.</creatorcontrib><creatorcontrib>Ewing-Cobbs, Linda</creatorcontrib><creatorcontrib>Fletcher, Jack M.</creatorcontrib><title>Diffusion tensor imaging-based tissue segmentation: Validation and application to the developing child and adolescent brain</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>We present and validate a novel diffusion tensor imaging (DTI) approach for segmenting the human whole-brain into partitions representing grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF). The approach utilizes the contrast among tissue types in the DTI anisotropy vs. diffusivity rotational invariant space. The DTI-based whole-brain GM and WM fractions (GMf and WMf) are contrasted with the fractions obtained from conventional magnetic resonance imaging (cMRI) tissue segmentation (or clustering) methods that utilized dual echo (proton density-weighted (PDw)), and spin–spin relaxation-weighted (T2w) contrast, in addition to spin-lattice relaxation weighted (T1w) contrasts acquired in the same imaging session and covering the same volume. In addition to good correspondence with cMRI estimates of brain volume, the DTI-based segmentation approach accurately depicts expected age vs. WM and GM volume-to-total intracranial brain volume percentage trends on the rapidly developing brains of a cohort of 29 children (6–18 years). This approach promises to extend DTI utility to both micro and macrostructural aspects of tissue organization.</description><subject>Adolescent</subject><subject>Adolescent Development</subject><subject>Adult</subject><subject>Age</subject><subject>Aged</subject><subject>Brain</subject><subject>Brain - anatomy & histology</subject><subject>Brain - growth & development</subject><subject>Brain - pathology</subject><subject>Brain - physiology</subject><subject>Cerebrospinal Fluid</subject><subject>Child</subject><subject>Child brain development</subject><subject>Child Development</subject><subject>Child, Preschool</subject><subject>Diffusion</subject><subject>DTI</subject><subject>Humans</subject><subject>Icosa21</subject><subject>Image Processing, Computer-Assisted</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Meta analysis</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Reference Values</subject><subject>Reproducibility of Results</subject><subject>Segmentation</subject><subject>Studies</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkk2P0zAQhiMEYpeFv4AsIXFL8aTxFwckWD6llbgAV8uxJ62r1A52Ugnx53FIxQKXPXnsefx63vFUFQG6AQr8xWETcE7RH80ONw2lvBxvaKPuVZdAFasVE839JWbbWgKoi-pRzgdKqYJWPqwuQADnouWX1c-3vu_n7GMgE4YcE1lEfdjVncnoyORznpFk3B0xTGYq4EvyzQze_Y6JCY6YcRy8XfdTJNMeicMTDnEsOsTu_eBWzsUBsy06pEvGh8fVg94MGZ-c16vq6_t3X64_1jefP3y6fn1TW7blU20sdl3bgWwbwRreU2p6JnpkrZVcgANgvWypaLpu2zMQLZUUWSOMVdwh67ZX1atVd5y7I7qlgGQGPaZiNf3Q0Xj9byb4vd7FkwalGKWiCDw_C6T4fcY86aMvPobBBIxz1lwqSTnwO0FQHKQAWcBn_4GHOKdQuqCB0eJK0Hah5ErZFHNO2P-pGaheBkEf9O0g6GUQlkwZhHL16d-eby-ef74Ab1YAS-dPHpPO1mOw6HxCO2kX_d2v_AIe_8y_</recordid><startdate>20070215</startdate><enddate>20070215</enddate><creator>Hasan, Khader M.</creator><creator>Halphen, Christopher</creator><creator>Sankar, Ambika</creator><creator>Eluvathingal, Thomas J.</creator><creator>Kramer, Larry</creator><creator>Stuebing, Karla K.</creator><creator>Ewing-Cobbs, Linda</creator><creator>Fletcher, Jack M.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070215</creationdate><title>Diffusion tensor imaging-based tissue segmentation: Validation and application to the developing child and adolescent brain</title><author>Hasan, Khader M. ; Halphen, Christopher ; Sankar, Ambika ; Eluvathingal, Thomas J. ; Kramer, Larry ; Stuebing, Karla K. ; Ewing-Cobbs, Linda ; Fletcher, Jack M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-acebb4b18427526f00af57fe54c8671d115f84072bb3f5174080e527ac96de5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adolescent</topic><topic>Adolescent Development</topic><topic>Adult</topic><topic>Age</topic><topic>Aged</topic><topic>Brain</topic><topic>Brain - anatomy & histology</topic><topic>Brain - growth & development</topic><topic>Brain - pathology</topic><topic>Brain - physiology</topic><topic>Cerebrospinal Fluid</topic><topic>Child</topic><topic>Child brain development</topic><topic>Child Development</topic><topic>Child, Preschool</topic><topic>Diffusion</topic><topic>DTI</topic><topic>Humans</topic><topic>Icosa21</topic><topic>Image Processing, Computer-Assisted</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Meta analysis</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Reference Values</topic><topic>Reproducibility of Results</topic><topic>Segmentation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasan, Khader M.</creatorcontrib><creatorcontrib>Halphen, Christopher</creatorcontrib><creatorcontrib>Sankar, Ambika</creatorcontrib><creatorcontrib>Eluvathingal, Thomas J.</creatorcontrib><creatorcontrib>Kramer, Larry</creatorcontrib><creatorcontrib>Stuebing, Karla K.</creatorcontrib><creatorcontrib>Ewing-Cobbs, Linda</creatorcontrib><creatorcontrib>Fletcher, Jack M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasan, Khader M.</au><au>Halphen, Christopher</au><au>Sankar, Ambika</au><au>Eluvathingal, Thomas J.</au><au>Kramer, Larry</au><au>Stuebing, Karla K.</au><au>Ewing-Cobbs, Linda</au><au>Fletcher, Jack M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion tensor imaging-based tissue segmentation: Validation and application to the developing child and adolescent brain</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2007-02-15</date><risdate>2007</risdate><volume>34</volume><issue>4</issue><spage>1497</spage><epage>1505</epage><pages>1497-1505</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>We present and validate a novel diffusion tensor imaging (DTI) approach for segmenting the human whole-brain into partitions representing grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF). The approach utilizes the contrast among tissue types in the DTI anisotropy vs. diffusivity rotational invariant space. The DTI-based whole-brain GM and WM fractions (GMf and WMf) are contrasted with the fractions obtained from conventional magnetic resonance imaging (cMRI) tissue segmentation (or clustering) methods that utilized dual echo (proton density-weighted (PDw)), and spin–spin relaxation-weighted (T2w) contrast, in addition to spin-lattice relaxation weighted (T1w) contrasts acquired in the same imaging session and covering the same volume. In addition to good correspondence with cMRI estimates of brain volume, the DTI-based segmentation approach accurately depicts expected age vs. WM and GM volume-to-total intracranial brain volume percentage trends on the rapidly developing brains of a cohort of 29 children (6–18 years). This approach promises to extend DTI utility to both micro and macrostructural aspects of tissue organization.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17166746</pmid><doi>10.1016/j.neuroimage.2006.10.029</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2007-02, Vol.34 (4), p.1497-1505 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1995007 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adolescent Adolescent Development Adult Age Aged Brain Brain - anatomy & histology Brain - growth & development Brain - pathology Brain - physiology Cerebrospinal Fluid Child Child brain development Child Development Child, Preschool Diffusion DTI Humans Icosa21 Image Processing, Computer-Assisted Magnetic Resonance Imaging - methods Meta analysis Methods Middle Aged Reference Values Reproducibility of Results Segmentation Studies |
title | Diffusion tensor imaging-based tissue segmentation: Validation and application to the developing child and adolescent brain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20tensor%20imaging-based%20tissue%20segmentation:%20Validation%20and%20application%20to%20the%20developing%20child%20and%20adolescent%20brain&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Hasan,%20Khader%20M.&rft.date=2007-02-15&rft.volume=34&rft.issue=4&rft.spage=1497&rft.epage=1505&rft.pages=1497-1505&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2006.10.029&rft_dat=%3Cproquest_pubme%3E68980616%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506717048&rft_id=info:pmid/17166746&rft_els_id=S1053811906010895&rfr_iscdi=true |