LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range

Legume– Rhizobium symbiosis is an example of selective cell recognition controlled by host/non‐host determinants. Individual bacterial strains have a distinct host range enabling nodulation of a limited set of legume species and vice versa. We show here that expression of Lotus japonicus Nfr1 and Nf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2007-09, Vol.26 (17), p.3923-3935
Hauptverfasser: Radutoiu, Simona, Madsen, Lene H, Madsen, Esben B, Jurkiewicz, Anna, Fukai, Eigo, Quistgaard, Esben MH, Albrektsen, Anita S, James, Euan K, Thirup, Søren, Stougaard, Jens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3935
container_issue 17
container_start_page 3923
container_title The EMBO journal
container_volume 26
creator Radutoiu, Simona
Madsen, Lene H
Madsen, Esben B
Jurkiewicz, Anna
Fukai, Eigo
Quistgaard, Esben MH
Albrektsen, Anita S
James, Euan K
Thirup, Søren
Stougaard, Jens
description Legume– Rhizobium symbiosis is an example of selective cell recognition controlled by host/non‐host determinants. Individual bacterial strains have a distinct host range enabling nodulation of a limited set of legume species and vice versa. We show here that expression of Lotus japonicus Nfr1 and Nfr5 Nod‐factor receptor genes in Medicago truncatula and L. filicaulis , extends their host range to include bacterial strains, Mesorhizobium loti or DZL, normally infecting L. japonicus . As a result, the symbiotic program is induced, nodules develop and infection threads are formed. Using L. japonicus mutants and domain swaps between L. japonicus and L. filicaulis NFR1 and NFR5, we further demonstrate that LysM domains of the NFR1 and NFR5 receptors mediate perception of the bacterial Nod‐factor signal and that recognition depends on the structure of the lipochitin–oligosaccharide Nod‐factor. We show that a single amino‐acid variation in the LysM2 domain of NFR5 changes recognition of the Nod‐factor synthesized by the DZL strain and suggests a possible binding site for bacterial lipochitin–oligosaccharide signal molecules.
doi_str_mv 10.1038/sj.emboj.7601826
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1994126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19753173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6486-4bbc02cf8e4e030a0c308eea2bb09df877cf86cb72bcc99183ba990ef8399cec3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhSMEokNhzwpZLNhlsOPEjw0SjEqhmikbXjvLcW4SD4k92Bno_HsMGbUFCXVlyfc7x-f6ZNlTgpcEU_Eybpcw1n675AwTUbB72YKUDOcF5tX9bIELRvKSCHmSPYpxizGuBCcPsxPCmcRM8EVm14e4QY0ftXURjdBYPQEa7M6b3k7W5X6wnY_amF4H2wAKYHzn0sg7pF2DLtuAOnAQEVxNkC6mHlA8jLX1kzWo93FCQbsOHmcPWj1EeHI8T7NPb88-rt7l6w_n71ev17lhpWB5WdcGF6YVUAKmWGNDsQDQRV1j2bSC8zRjpuZFbYyURNBaS4mhFVRKA4aeZq9m392-TvsYcFPQg9oFO-pwUF5b9ffE2V51_ociUpakYMngxdEg-O97iJMabTQwDNqB30fFREErRu8GieQVJZwm8Pk_4Nbvg0u_kJiqqCSnZYLwDJngYwzQXkcmWP1uW8Wt-tO2OradJM9ur3ojONabADkDP-0AhzsN1dnmzcWNOZm1MclSf-FW6P8HymeNjRNcXb-nwzfFOOWV-nJ5rj6vilJu-Fd1QX8BqTDcYA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195259734</pqid></control><display><type>article</type><title>LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range</title><source>Springer Nature OA Free Journals</source><creator>Radutoiu, Simona ; Madsen, Lene H ; Madsen, Esben B ; Jurkiewicz, Anna ; Fukai, Eigo ; Quistgaard, Esben MH ; Albrektsen, Anita S ; James, Euan K ; Thirup, Søren ; Stougaard, Jens</creator><creatorcontrib>Radutoiu, Simona ; Madsen, Lene H ; Madsen, Esben B ; Jurkiewicz, Anna ; Fukai, Eigo ; Quistgaard, Esben MH ; Albrektsen, Anita S ; James, Euan K ; Thirup, Søren ; Stougaard, Jens</creatorcontrib><description>Legume– Rhizobium symbiosis is an example of selective cell recognition controlled by host/non‐host determinants. Individual bacterial strains have a distinct host range enabling nodulation of a limited set of legume species and vice versa. We show here that expression of Lotus japonicus Nfr1 and Nfr5 Nod‐factor receptor genes in Medicago truncatula and L. filicaulis , extends their host range to include bacterial strains, Mesorhizobium loti or DZL, normally infecting L. japonicus . As a result, the symbiotic program is induced, nodules develop and infection threads are formed. Using L. japonicus mutants and domain swaps between L. japonicus and L. filicaulis NFR1 and NFR5, we further demonstrate that LysM domains of the NFR1 and NFR5 receptors mediate perception of the bacterial Nod‐factor signal and that recognition depends on the structure of the lipochitin–oligosaccharide Nod‐factor. We show that a single amino‐acid variation in the LysM2 domain of NFR5 changes recognition of the Nod‐factor synthesized by the DZL strain and suggests a possible binding site for bacterial lipochitin–oligosaccharide signal molecules.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/sj.emboj.7601826</identifier><identifier>PMID: 17690687</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Alfalfa ; Alphaproteobacteria - metabolism ; Amino Acid Substitution ; Bacteria ; Bacterial Proteins - metabolism ; Binding sites ; Botany ; Cellular biology ; Chitin - metabolism ; host range ; lipochitin-oligosaccharides ; Lipopolysaccharides - metabolism ; Loteae - genetics ; Loteae - metabolism ; Loteae - microbiology ; Lotus japonicus ; LysM ; Medicago truncatula ; Medicago truncatula - metabolism ; Medicago truncatula - microbiology ; Mesorhizobium loti ; Models, Molecular ; Molecular biology ; Mutation ; Plant Proteins - biosynthesis ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Roots - metabolism ; Protein Structure, Tertiary ; receptor ; Signal transduction ; Symbiosis</subject><ispartof>The EMBO journal, 2007-09, Vol.26 (17), p.3923-3935</ispartof><rights>European Molecular Biology Organization 2007</rights><rights>Copyright © 2007 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Sep 5, 2007</rights><rights>Copyright © 2007, European Molecular Biology Organization 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6486-4bbc02cf8e4e030a0c308eea2bb09df877cf86cb72bcc99183ba990ef8399cec3</citedby><cites>FETCH-LOGICAL-c6486-4bbc02cf8e4e030a0c308eea2bb09df877cf86cb72bcc99183ba990ef8399cec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1994126/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1994126/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27903,27904,41099,42168,45553,45554,46387,46811,51554,53769,53771</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/sj.emboj.7601826$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17690687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Radutoiu, Simona</creatorcontrib><creatorcontrib>Madsen, Lene H</creatorcontrib><creatorcontrib>Madsen, Esben B</creatorcontrib><creatorcontrib>Jurkiewicz, Anna</creatorcontrib><creatorcontrib>Fukai, Eigo</creatorcontrib><creatorcontrib>Quistgaard, Esben MH</creatorcontrib><creatorcontrib>Albrektsen, Anita S</creatorcontrib><creatorcontrib>James, Euan K</creatorcontrib><creatorcontrib>Thirup, Søren</creatorcontrib><creatorcontrib>Stougaard, Jens</creatorcontrib><title>LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Legume– Rhizobium symbiosis is an example of selective cell recognition controlled by host/non‐host determinants. Individual bacterial strains have a distinct host range enabling nodulation of a limited set of legume species and vice versa. We show here that expression of Lotus japonicus Nfr1 and Nfr5 Nod‐factor receptor genes in Medicago truncatula and L. filicaulis , extends their host range to include bacterial strains, Mesorhizobium loti or DZL, normally infecting L. japonicus . As a result, the symbiotic program is induced, nodules develop and infection threads are formed. Using L. japonicus mutants and domain swaps between L. japonicus and L. filicaulis NFR1 and NFR5, we further demonstrate that LysM domains of the NFR1 and NFR5 receptors mediate perception of the bacterial Nod‐factor signal and that recognition depends on the structure of the lipochitin–oligosaccharide Nod‐factor. We show that a single amino‐acid variation in the LysM2 domain of NFR5 changes recognition of the Nod‐factor synthesized by the DZL strain and suggests a possible binding site for bacterial lipochitin–oligosaccharide signal molecules.</description><subject>Alfalfa</subject><subject>Alphaproteobacteria - metabolism</subject><subject>Amino Acid Substitution</subject><subject>Bacteria</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding sites</subject><subject>Botany</subject><subject>Cellular biology</subject><subject>Chitin - metabolism</subject><subject>host range</subject><subject>lipochitin-oligosaccharides</subject><subject>Lipopolysaccharides - metabolism</subject><subject>Loteae - genetics</subject><subject>Loteae - metabolism</subject><subject>Loteae - microbiology</subject><subject>Lotus japonicus</subject><subject>LysM</subject><subject>Medicago truncatula</subject><subject>Medicago truncatula - metabolism</subject><subject>Medicago truncatula - microbiology</subject><subject>Mesorhizobium loti</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Mutation</subject><subject>Plant Proteins - biosynthesis</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Roots - metabolism</subject><subject>Protein Structure, Tertiary</subject><subject>receptor</subject><subject>Signal transduction</subject><subject>Symbiosis</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUtv1DAUhSMEokNhzwpZLNhlsOPEjw0SjEqhmikbXjvLcW4SD4k92Bno_HsMGbUFCXVlyfc7x-f6ZNlTgpcEU_Eybpcw1n675AwTUbB72YKUDOcF5tX9bIELRvKSCHmSPYpxizGuBCcPsxPCmcRM8EVm14e4QY0ftXURjdBYPQEa7M6b3k7W5X6wnY_amF4H2wAKYHzn0sg7pF2DLtuAOnAQEVxNkC6mHlA8jLX1kzWo93FCQbsOHmcPWj1EeHI8T7NPb88-rt7l6w_n71ev17lhpWB5WdcGF6YVUAKmWGNDsQDQRV1j2bSC8zRjpuZFbYyURNBaS4mhFVRKA4aeZq9m392-TvsYcFPQg9oFO-pwUF5b9ffE2V51_ociUpakYMngxdEg-O97iJMabTQwDNqB30fFREErRu8GieQVJZwm8Pk_4Nbvg0u_kJiqqCSnZYLwDJngYwzQXkcmWP1uW8Wt-tO2OradJM9ur3ojONabADkDP-0AhzsN1dnmzcWNOZm1MclSf-FW6P8HymeNjRNcXb-nwzfFOOWV-nJ5rj6vilJu-Fd1QX8BqTDcYA</recordid><startdate>20070905</startdate><enddate>20070905</enddate><creator>Radutoiu, Simona</creator><creator>Madsen, Lene H</creator><creator>Madsen, Esben B</creator><creator>Jurkiewicz, Anna</creator><creator>Fukai, Eigo</creator><creator>Quistgaard, Esben MH</creator><creator>Albrektsen, Anita S</creator><creator>James, Euan K</creator><creator>Thirup, Søren</creator><creator>Stougaard, Jens</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>Nature Publishing Group</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070905</creationdate><title>LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range</title><author>Radutoiu, Simona ; Madsen, Lene H ; Madsen, Esben B ; Jurkiewicz, Anna ; Fukai, Eigo ; Quistgaard, Esben MH ; Albrektsen, Anita S ; James, Euan K ; Thirup, Søren ; Stougaard, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6486-4bbc02cf8e4e030a0c308eea2bb09df877cf86cb72bcc99183ba990ef8399cec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Alfalfa</topic><topic>Alphaproteobacteria - metabolism</topic><topic>Amino Acid Substitution</topic><topic>Bacteria</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding sites</topic><topic>Botany</topic><topic>Cellular biology</topic><topic>Chitin - metabolism</topic><topic>host range</topic><topic>lipochitin-oligosaccharides</topic><topic>Lipopolysaccharides - metabolism</topic><topic>Loteae - genetics</topic><topic>Loteae - metabolism</topic><topic>Loteae - microbiology</topic><topic>Lotus japonicus</topic><topic>LysM</topic><topic>Medicago truncatula</topic><topic>Medicago truncatula - metabolism</topic><topic>Medicago truncatula - microbiology</topic><topic>Mesorhizobium loti</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Mutation</topic><topic>Plant Proteins - biosynthesis</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Roots - metabolism</topic><topic>Protein Structure, Tertiary</topic><topic>receptor</topic><topic>Signal transduction</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radutoiu, Simona</creatorcontrib><creatorcontrib>Madsen, Lene H</creatorcontrib><creatorcontrib>Madsen, Esben B</creatorcontrib><creatorcontrib>Jurkiewicz, Anna</creatorcontrib><creatorcontrib>Fukai, Eigo</creatorcontrib><creatorcontrib>Quistgaard, Esben MH</creatorcontrib><creatorcontrib>Albrektsen, Anita S</creatorcontrib><creatorcontrib>James, Euan K</creatorcontrib><creatorcontrib>Thirup, Søren</creatorcontrib><creatorcontrib>Stougaard, Jens</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Radutoiu, Simona</au><au>Madsen, Lene H</au><au>Madsen, Esben B</au><au>Jurkiewicz, Anna</au><au>Fukai, Eigo</au><au>Quistgaard, Esben MH</au><au>Albrektsen, Anita S</au><au>James, Euan K</au><au>Thirup, Søren</au><au>Stougaard, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2007-09-05</date><risdate>2007</risdate><volume>26</volume><issue>17</issue><spage>3923</spage><epage>3935</epage><pages>3923-3935</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Legume– Rhizobium symbiosis is an example of selective cell recognition controlled by host/non‐host determinants. Individual bacterial strains have a distinct host range enabling nodulation of a limited set of legume species and vice versa. We show here that expression of Lotus japonicus Nfr1 and Nfr5 Nod‐factor receptor genes in Medicago truncatula and L. filicaulis , extends their host range to include bacterial strains, Mesorhizobium loti or DZL, normally infecting L. japonicus . As a result, the symbiotic program is induced, nodules develop and infection threads are formed. Using L. japonicus mutants and domain swaps between L. japonicus and L. filicaulis NFR1 and NFR5, we further demonstrate that LysM domains of the NFR1 and NFR5 receptors mediate perception of the bacterial Nod‐factor signal and that recognition depends on the structure of the lipochitin–oligosaccharide Nod‐factor. We show that a single amino‐acid variation in the LysM2 domain of NFR5 changes recognition of the Nod‐factor synthesized by the DZL strain and suggests a possible binding site for bacterial lipochitin–oligosaccharide signal molecules.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>17690687</pmid><doi>10.1038/sj.emboj.7601826</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2007-09, Vol.26 (17), p.3923-3935
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1994126
source Springer Nature OA Free Journals
subjects Alfalfa
Alphaproteobacteria - metabolism
Amino Acid Substitution
Bacteria
Bacterial Proteins - metabolism
Binding sites
Botany
Cellular biology
Chitin - metabolism
host range
lipochitin-oligosaccharides
Lipopolysaccharides - metabolism
Loteae - genetics
Loteae - metabolism
Loteae - microbiology
Lotus japonicus
LysM
Medicago truncatula
Medicago truncatula - metabolism
Medicago truncatula - microbiology
Mesorhizobium loti
Models, Molecular
Molecular biology
Mutation
Plant Proteins - biosynthesis
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Roots - metabolism
Protein Structure, Tertiary
receptor
Signal transduction
Symbiosis
title LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LysM%20domains%20mediate%20lipochitin-oligosaccharide%20recognition%20and%20Nfr%20genes%20extend%20the%20symbiotic%20host%20range&rft.jtitle=The%20EMBO%20journal&rft.au=Radutoiu,%20Simona&rft.date=2007-09-05&rft.volume=26&rft.issue=17&rft.spage=3923&rft.epage=3935&rft.pages=3923-3935&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1038/sj.emboj.7601826&rft_dat=%3Cproquest_C6C%3E19753173%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195259734&rft_id=info:pmid/17690687&rfr_iscdi=true