Ribonucleoprotein-masked nicks at 50-kbp intervals in the eukaryotic genomic DNA

By using a microscopic approach, field inversion single-cell gel electrophoresis, we show that preformed single-strand discontinuities are present in the chromatin of resting and proliferating mammalian and yeast cells. These single-strand breaks are primarily nicks positioned at [almost equal to]50...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-09, Vol.104 (38), p.14964-14969
Hauptverfasser: Székvölgyi, Lóránt, Rákosy, Zsuzsa, Bálint, Bálint L, Kókai, Endre, Imre, László, Vereb, György, Bacsó, Zsolt, Goda, Katalin, Varga, Sándor, Balázs, Margit, Dombrádi, Viktor, Nagy, László, Szabó, Gábor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14969
container_issue 38
container_start_page 14964
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Székvölgyi, Lóránt
Rákosy, Zsuzsa
Bálint, Bálint L
Kókai, Endre
Imre, László
Vereb, György
Bacsó, Zsolt
Goda, Katalin
Varga, Sándor
Balázs, Margit
Dombrádi, Viktor
Nagy, László
Szabó, Gábor
description By using a microscopic approach, field inversion single-cell gel electrophoresis, we show that preformed single-strand discontinuities are present in the chromatin of resting and proliferating mammalian and yeast cells. These single-strand breaks are primarily nicks positioned at [almost equal to]50-kbp intervals throughout the entire genome that could be efficiently labeled in situ by DNA polymerase I holoenzyme but not by Klenow fragment and terminal transferase unless after ribonucleolytic treatments. The RNA molecules involved appear to comprise R-loops, recognized by the S9.6 RNA/DNA hybrid-specific antibody. By using the breakpoint cluster region of the Mixed Lineage Leukemia (MLL) gene as a model, we have found that the number of manifest nicks detected by FISH performed after field inversion single-cell gel electrophoresis depends on epigenetic context, but the difference between germ-line and translocated MLL alleles is abolished by protease treatment. Our data imply that the double-stranded genomic DNA is composed of contiguous rather than continuous single strands and reveal an aspect of higher-order chromatin organization with ribonucleoprotein-associated persistent nicks defining [almost equal to]50-kbp domains.
doi_str_mv 10.1073/pnas.0702269104
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1986596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25449067</jstor_id><sourcerecordid>25449067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-5f4247e89e23bef06758464bf944f3b341e75c330e4dfa429a71ae7808c0aecc3</originalsourceid><addsrcrecordid>eNqFks1v1DAQxSMEokvhzAmIOFTikHbs2LF9QapK-ZAqQEDPluOdbLOb2KntVPDf49WuusCF01ia3zzNm-eieE7glICozyZn4ikIoLRRBNiDYkFAkaphCh4WCwAqKskoOyqexLgGAMUlPC6OiJBMcsoXxddvfevdbAf0U_AJe1eNJm5wWbrebmJpUsmh2rRT2buE4c4MMb_KdIMlzhsTfvnU23KFzo-5vvt8_rR41GUIn-3rcXH9_vLHxcfq6suHTxfnV5VtKKSKd3ktgVIhrVvsoBFcsoa1nWKsq9uaERTc1jUgW3aGUWUEMSgkSAsGra2Pi7c73WluR1xadCmYQU-hH_NW2pte_91x_Y1e-TtNlGy4arLAyV4g-NsZY9JjHy0Og3Ho56gpSOCiURl8_Q-49nNw2VxmSE2J4pChsx1kg48xYHe_CQG9jUpvo9KHqPLEyz8NHPh9Nhl4swe2kwc5pmupCVMN0908DAl_psyW_2Ez8mKHrGPy4Z6hnOXP0ojcf7Xrd8Zrswp91NfftwYhH0LW-RC_AWiHuyY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201321950</pqid></control><display><type>article</type><title>Ribonucleoprotein-masked nicks at 50-kbp intervals in the eukaryotic genomic DNA</title><source>PubMed Central Free</source><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Székvölgyi, Lóránt ; Rákosy, Zsuzsa ; Bálint, Bálint L ; Kókai, Endre ; Imre, László ; Vereb, György ; Bacsó, Zsolt ; Goda, Katalin ; Varga, Sándor ; Balázs, Margit ; Dombrádi, Viktor ; Nagy, László ; Szabó, Gábor</creator><creatorcontrib>Székvölgyi, Lóránt ; Rákosy, Zsuzsa ; Bálint, Bálint L ; Kókai, Endre ; Imre, László ; Vereb, György ; Bacsó, Zsolt ; Goda, Katalin ; Varga, Sándor ; Balázs, Margit ; Dombrádi, Viktor ; Nagy, László ; Szabó, Gábor</creatorcontrib><description>By using a microscopic approach, field inversion single-cell gel electrophoresis, we show that preformed single-strand discontinuities are present in the chromatin of resting and proliferating mammalian and yeast cells. These single-strand breaks are primarily nicks positioned at [almost equal to]50-kbp intervals throughout the entire genome that could be efficiently labeled in situ by DNA polymerase I holoenzyme but not by Klenow fragment and terminal transferase unless after ribonucleolytic treatments. The RNA molecules involved appear to comprise R-loops, recognized by the S9.6 RNA/DNA hybrid-specific antibody. By using the breakpoint cluster region of the Mixed Lineage Leukemia (MLL) gene as a model, we have found that the number of manifest nicks detected by FISH performed after field inversion single-cell gel electrophoresis depends on epigenetic context, but the difference between germ-line and translocated MLL alleles is abolished by protease treatment. Our data imply that the double-stranded genomic DNA is composed of contiguous rather than continuous single strands and reveal an aspect of higher-order chromatin organization with ribonucleoprotein-associated persistent nicks defining [almost equal to]50-kbp domains.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0702269104</identifier><identifier>PMID: 17848525</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Cell lines ; Cell Proliferation ; Cells, Cultured ; Chromatin ; Chromatin - ultrastructure ; Chromosomes ; Comet Assay ; Comets ; Deoxyribonucleic acid ; DNA ; DNA - metabolism ; DNA Breaks, Single-Stranded ; DNA Fragmentation ; DNA polymerase ; Eukaryotes ; Fluorescence in situ hybridization ; Genomics ; Humans ; Hybridity ; In Situ Hybridization, Fluorescence ; Jurkat Cells ; Myeloid-Lymphoid Leukemia Protein - genetics ; Myeloid-Lymphoid Leukemia Protein - metabolism ; Proteins ; Ribonucleic acid ; Ribonucleoproteins - chemistry ; Ribonucleoproteins - metabolism ; RNA ; RNA - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; T lymphocytes ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-09, Vol.104 (38), p.14964-14969</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 18, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-5f4247e89e23bef06758464bf944f3b341e75c330e4dfa429a71ae7808c0aecc3</citedby><cites>FETCH-LOGICAL-c620t-5f4247e89e23bef06758464bf944f3b341e75c330e4dfa429a71ae7808c0aecc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/38.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25449067$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25449067$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17848525$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Székvölgyi, Lóránt</creatorcontrib><creatorcontrib>Rákosy, Zsuzsa</creatorcontrib><creatorcontrib>Bálint, Bálint L</creatorcontrib><creatorcontrib>Kókai, Endre</creatorcontrib><creatorcontrib>Imre, László</creatorcontrib><creatorcontrib>Vereb, György</creatorcontrib><creatorcontrib>Bacsó, Zsolt</creatorcontrib><creatorcontrib>Goda, Katalin</creatorcontrib><creatorcontrib>Varga, Sándor</creatorcontrib><creatorcontrib>Balázs, Margit</creatorcontrib><creatorcontrib>Dombrádi, Viktor</creatorcontrib><creatorcontrib>Nagy, László</creatorcontrib><creatorcontrib>Szabó, Gábor</creatorcontrib><title>Ribonucleoprotein-masked nicks at 50-kbp intervals in the eukaryotic genomic DNA</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>By using a microscopic approach, field inversion single-cell gel electrophoresis, we show that preformed single-strand discontinuities are present in the chromatin of resting and proliferating mammalian and yeast cells. These single-strand breaks are primarily nicks positioned at [almost equal to]50-kbp intervals throughout the entire genome that could be efficiently labeled in situ by DNA polymerase I holoenzyme but not by Klenow fragment and terminal transferase unless after ribonucleolytic treatments. The RNA molecules involved appear to comprise R-loops, recognized by the S9.6 RNA/DNA hybrid-specific antibody. By using the breakpoint cluster region of the Mixed Lineage Leukemia (MLL) gene as a model, we have found that the number of manifest nicks detected by FISH performed after field inversion single-cell gel electrophoresis depends on epigenetic context, but the difference between germ-line and translocated MLL alleles is abolished by protease treatment. Our data imply that the double-stranded genomic DNA is composed of contiguous rather than continuous single strands and reveal an aspect of higher-order chromatin organization with ribonucleoprotein-associated persistent nicks defining [almost equal to]50-kbp domains.</description><subject>Biological Sciences</subject><subject>Cell lines</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Chromatin</subject><subject>Chromatin - ultrastructure</subject><subject>Chromosomes</subject><subject>Comet Assay</subject><subject>Comets</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>DNA Breaks, Single-Stranded</subject><subject>DNA Fragmentation</subject><subject>DNA polymerase</subject><subject>Eukaryotes</subject><subject>Fluorescence in situ hybridization</subject><subject>Genomics</subject><subject>Humans</subject><subject>Hybridity</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Jurkat Cells</subject><subject>Myeloid-Lymphoid Leukemia Protein - genetics</subject><subject>Myeloid-Lymphoid Leukemia Protein - metabolism</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>Ribonucleoproteins - chemistry</subject><subject>Ribonucleoproteins - metabolism</subject><subject>RNA</subject><subject>RNA - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>T lymphocytes</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1v1DAQxSMEokvhzAmIOFTikHbs2LF9QapK-ZAqQEDPluOdbLOb2KntVPDf49WuusCF01ia3zzNm-eieE7glICozyZn4ikIoLRRBNiDYkFAkaphCh4WCwAqKskoOyqexLgGAMUlPC6OiJBMcsoXxddvfevdbAf0U_AJe1eNJm5wWbrebmJpUsmh2rRT2buE4c4MMb_KdIMlzhsTfvnU23KFzo-5vvt8_rR41GUIn-3rcXH9_vLHxcfq6suHTxfnV5VtKKSKd3ktgVIhrVvsoBFcsoa1nWKsq9uaERTc1jUgW3aGUWUEMSgkSAsGra2Pi7c73WluR1xadCmYQU-hH_NW2pte_91x_Y1e-TtNlGy4arLAyV4g-NsZY9JjHy0Og3Ho56gpSOCiURl8_Q-49nNw2VxmSE2J4pChsx1kg48xYHe_CQG9jUpvo9KHqPLEyz8NHPh9Nhl4swe2kwc5pmupCVMN0908DAl_psyW_2Ez8mKHrGPy4Z6hnOXP0ojcf7Xrd8Zrswp91NfftwYhH0LW-RC_AWiHuyY</recordid><startdate>20070918</startdate><enddate>20070918</enddate><creator>Székvölgyi, Lóránt</creator><creator>Rákosy, Zsuzsa</creator><creator>Bálint, Bálint L</creator><creator>Kókai, Endre</creator><creator>Imre, László</creator><creator>Vereb, György</creator><creator>Bacsó, Zsolt</creator><creator>Goda, Katalin</creator><creator>Varga, Sándor</creator><creator>Balázs, Margit</creator><creator>Dombrádi, Viktor</creator><creator>Nagy, László</creator><creator>Szabó, Gábor</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20070918</creationdate><title>Ribonucleoprotein-masked nicks at 50-kbp intervals in the eukaryotic genomic DNA</title><author>Székvölgyi, Lóránt ; Rákosy, Zsuzsa ; Bálint, Bálint L ; Kókai, Endre ; Imre, László ; Vereb, György ; Bacsó, Zsolt ; Goda, Katalin ; Varga, Sándor ; Balázs, Margit ; Dombrádi, Viktor ; Nagy, László ; Szabó, Gábor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-5f4247e89e23bef06758464bf944f3b341e75c330e4dfa429a71ae7808c0aecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biological Sciences</topic><topic>Cell lines</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Chromatin</topic><topic>Chromatin - ultrastructure</topic><topic>Chromosomes</topic><topic>Comet Assay</topic><topic>Comets</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>DNA Breaks, Single-Stranded</topic><topic>DNA Fragmentation</topic><topic>DNA polymerase</topic><topic>Eukaryotes</topic><topic>Fluorescence in situ hybridization</topic><topic>Genomics</topic><topic>Humans</topic><topic>Hybridity</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Jurkat Cells</topic><topic>Myeloid-Lymphoid Leukemia Protein - genetics</topic><topic>Myeloid-Lymphoid Leukemia Protein - metabolism</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>Ribonucleoproteins - chemistry</topic><topic>Ribonucleoproteins - metabolism</topic><topic>RNA</topic><topic>RNA - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>T lymphocytes</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Székvölgyi, Lóránt</creatorcontrib><creatorcontrib>Rákosy, Zsuzsa</creatorcontrib><creatorcontrib>Bálint, Bálint L</creatorcontrib><creatorcontrib>Kókai, Endre</creatorcontrib><creatorcontrib>Imre, László</creatorcontrib><creatorcontrib>Vereb, György</creatorcontrib><creatorcontrib>Bacsó, Zsolt</creatorcontrib><creatorcontrib>Goda, Katalin</creatorcontrib><creatorcontrib>Varga, Sándor</creatorcontrib><creatorcontrib>Balázs, Margit</creatorcontrib><creatorcontrib>Dombrádi, Viktor</creatorcontrib><creatorcontrib>Nagy, László</creatorcontrib><creatorcontrib>Szabó, Gábor</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Székvölgyi, Lóránt</au><au>Rákosy, Zsuzsa</au><au>Bálint, Bálint L</au><au>Kókai, Endre</au><au>Imre, László</au><au>Vereb, György</au><au>Bacsó, Zsolt</au><au>Goda, Katalin</au><au>Varga, Sándor</au><au>Balázs, Margit</au><au>Dombrádi, Viktor</au><au>Nagy, László</au><au>Szabó, Gábor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ribonucleoprotein-masked nicks at 50-kbp intervals in the eukaryotic genomic DNA</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-09-18</date><risdate>2007</risdate><volume>104</volume><issue>38</issue><spage>14964</spage><epage>14969</epage><pages>14964-14969</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>By using a microscopic approach, field inversion single-cell gel electrophoresis, we show that preformed single-strand discontinuities are present in the chromatin of resting and proliferating mammalian and yeast cells. These single-strand breaks are primarily nicks positioned at [almost equal to]50-kbp intervals throughout the entire genome that could be efficiently labeled in situ by DNA polymerase I holoenzyme but not by Klenow fragment and terminal transferase unless after ribonucleolytic treatments. The RNA molecules involved appear to comprise R-loops, recognized by the S9.6 RNA/DNA hybrid-specific antibody. By using the breakpoint cluster region of the Mixed Lineage Leukemia (MLL) gene as a model, we have found that the number of manifest nicks detected by FISH performed after field inversion single-cell gel electrophoresis depends on epigenetic context, but the difference between germ-line and translocated MLL alleles is abolished by protease treatment. Our data imply that the double-stranded genomic DNA is composed of contiguous rather than continuous single strands and reveal an aspect of higher-order chromatin organization with ribonucleoprotein-associated persistent nicks defining [almost equal to]50-kbp domains.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17848525</pmid><doi>10.1073/pnas.0702269104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-09, Vol.104 (38), p.14964-14969
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1986596
source PubMed Central Free; MEDLINE; Jstor Complete Legacy; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Cell lines
Cell Proliferation
Cells, Cultured
Chromatin
Chromatin - ultrastructure
Chromosomes
Comet Assay
Comets
Deoxyribonucleic acid
DNA
DNA - metabolism
DNA Breaks, Single-Stranded
DNA Fragmentation
DNA polymerase
Eukaryotes
Fluorescence in situ hybridization
Genomics
Humans
Hybridity
In Situ Hybridization, Fluorescence
Jurkat Cells
Myeloid-Lymphoid Leukemia Protein - genetics
Myeloid-Lymphoid Leukemia Protein - metabolism
Proteins
Ribonucleic acid
Ribonucleoproteins - chemistry
Ribonucleoproteins - metabolism
RNA
RNA - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
T lymphocytes
Yeasts
title Ribonucleoprotein-masked nicks at 50-kbp intervals in the eukaryotic genomic DNA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ribonucleoprotein-masked%20nicks%20at%2050-kbp%20intervals%20in%20the%20eukaryotic%20genomic%20DNA&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sz%C3%A9kv%C3%B6lgyi,%20L%C3%B3r%C3%A1nt&rft.date=2007-09-18&rft.volume=104&rft.issue=38&rft.spage=14964&rft.epage=14969&rft.pages=14964-14969&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0702269104&rft_dat=%3Cjstor_pubme%3E25449067%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201321950&rft_id=info:pmid/17848525&rft_jstor_id=25449067&rfr_iscdi=true