Temperature preconditioning of isolated rat hearts – a potent cardioprotective mechanism involving a reduction in oxidative stress and inhibition of the mitochondrial permeability transition pore

We investigate whether temperature preconditioning (TP), induced by short-term hypothermic perfusion and rewarming, may protect hearts against ischaemic/reperfusion injury like ischaemic preconditioning ( IP ). Isolated rat hearts were perfused for 40 min, followed by 25 min global ischaemia and 60...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 2007-06, Vol.581 (3), p.1147-1161
Hauptverfasser: Khaliulin, Igor, Clarke, Samantha J., Lin, Hua, Parker, Joanna, Suleiman, M.‐Saadeh, Halestrap, Andrew P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1161
container_issue 3
container_start_page 1147
container_title The Journal of physiology
container_volume 581
creator Khaliulin, Igor
Clarke, Samantha J.
Lin, Hua
Parker, Joanna
Suleiman, M.‐Saadeh
Halestrap, Andrew P.
description We investigate whether temperature preconditioning (TP), induced by short-term hypothermic perfusion and rewarming, may protect hearts against ischaemic/reperfusion injury like ischaemic preconditioning ( IP ). Isolated rat hearts were perfused for 40 min, followed by 25 min global ischaemia and 60 min reperfusion (37°C). During pre-ischaemia, IP hearts underwent three cycles of 2 min global ischaemia and 3 min reperfusion at 37°C, whereas TP hearts received three cycles of 2 min hypothermic perfusion (26°C) interspersed by 3 min normothermic perfusion. Other hearts received a single 6 min hypothermic perfusion (SHP) before ischaemia. Both IP and TP protocols increased levels of high energy phosphates in the pre-ischaemic heart. During reperfusion, TP improved haemodynamic recovery, decreased arrhythmias and reduced necrotic damage (lactate dehydrogenase release) more than IP or SHP. Measurements of tissue NAD + levels and calcium-induced swelling of mitochondria isolated at 3 min reperfusion were consistent with greater inhibition of the mitochondrial permeability transition at reperfusion by TP than IP; this correlated with decreased protein carbonylation, a surrogate marker for oxidative stress. TP increased protein kinase Cε (PKCε) translocation to the particulate fraction and pretreatment with chelerythrine (PKC inhibitor) blocked the protective effect of TP. TP also increased phosphorylation of AMP-activated protein kinase (AMPK) after 5 min index ischaemia, but not before ischaemia. Compound C (AMPK inhibitor) partially blocked cardioprotection by TP, suggesting that both PKC and AMPK may mediate the effects of TP. The presence of N -(2-mercaptopropionyl) glycine during TP also abolished cardioprotection, indicating an involvement of free radicals in the signalling mechanism.
doi_str_mv 10.1113/jphysiol.2007.130369
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1976396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70620170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4899-d3ed65a2e2416bf225cb6763a9af6aa457257881541e78fcdb91c94af884b0373</originalsourceid><addsrcrecordid>eNqNkkuO1DAQhiMEYpqBGyDkFWLTjR9JHG-Q0IinRoLFsLYqTqXjURIH290zveMO3ICjDBuOhTNpXjtWlu2vvr9kV5Y9ZnTDGBPPL6fuEKzrN5xSuWGCilLdyVYsL9VaSiXuZitKOV8LWbCT7EEIl5QmSqn72QmTQhWlYKvsxwUOE3qIO49k8mjc2Nho3WjHLXEtscH1ELEhCSEdgo-BfP928-XmKwEyuYhjJAZ8Y93k085Eu0cyoOlgtGEgdty7fj-7gHhsdmZWp1Pirm0Dt3CIHkMgMDbpvLP1bfocHbtkstGZLvXkLfQkNTog1La38UCihzEs8OQ8PszutdAHfHRcT7NPr19dnL1dn3948-7s5fna5JVS60ZgUxbAkeesrFvOC1OXshSgoC0B8kLyQlYVK3KGsmpNUytmVA5tVeU1FVKcZi8W77SrB2xMegAPvZ68HcAftAOr_70Zbae3bq-ZSjGqTIKnR4F3n3cYoh5sMNj3MKLbBS1pySmTNIH5AhrvQvDY_g5hVM8joH-NgJ5HQC8jkMqe_N3gn6LjnydALcCV7fHwX1J98f4j52yWP1tqO7vtrqxHvdDBGYvxoIuKaZE8uRQ_AeNH2ik</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70620170</pqid></control><display><type>article</type><title>Temperature preconditioning of isolated rat hearts – a potent cardioprotective mechanism involving a reduction in oxidative stress and inhibition of the mitochondrial permeability transition pore</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Khaliulin, Igor ; Clarke, Samantha J. ; Lin, Hua ; Parker, Joanna ; Suleiman, M.‐Saadeh ; Halestrap, Andrew P.</creator><creatorcontrib>Khaliulin, Igor ; Clarke, Samantha J. ; Lin, Hua ; Parker, Joanna ; Suleiman, M.‐Saadeh ; Halestrap, Andrew P.</creatorcontrib><description>We investigate whether temperature preconditioning (TP), induced by short-term hypothermic perfusion and rewarming, may protect hearts against ischaemic/reperfusion injury like ischaemic preconditioning ( IP ). Isolated rat hearts were perfused for 40 min, followed by 25 min global ischaemia and 60 min reperfusion (37°C). During pre-ischaemia, IP hearts underwent three cycles of 2 min global ischaemia and 3 min reperfusion at 37°C, whereas TP hearts received three cycles of 2 min hypothermic perfusion (26°C) interspersed by 3 min normothermic perfusion. Other hearts received a single 6 min hypothermic perfusion (SHP) before ischaemia. Both IP and TP protocols increased levels of high energy phosphates in the pre-ischaemic heart. During reperfusion, TP improved haemodynamic recovery, decreased arrhythmias and reduced necrotic damage (lactate dehydrogenase release) more than IP or SHP. Measurements of tissue NAD + levels and calcium-induced swelling of mitochondria isolated at 3 min reperfusion were consistent with greater inhibition of the mitochondrial permeability transition at reperfusion by TP than IP; this correlated with decreased protein carbonylation, a surrogate marker for oxidative stress. TP increased protein kinase Cε (PKCε) translocation to the particulate fraction and pretreatment with chelerythrine (PKC inhibitor) blocked the protective effect of TP. TP also increased phosphorylation of AMP-activated protein kinase (AMPK) after 5 min index ischaemia, but not before ischaemia. Compound C (AMPK inhibitor) partially blocked cardioprotection by TP, suggesting that both PKC and AMPK may mediate the effects of TP. The presence of N -(2-mercaptopropionyl) glycine during TP also abolished cardioprotection, indicating an involvement of free radicals in the signalling mechanism.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2007.130369</identifier><identifier>PMID: 17395631</identifier><language>eng</language><publisher>Oxford, UK: The Physiological Society</publisher><subject>AMP-Activated Protein Kinases ; Animals ; Arrhythmias, Cardiac - etiology ; Arrhythmias, Cardiac - metabolism ; Arrhythmias, Cardiac - prevention &amp; control ; Cardiovascular ; Coronary Circulation ; Hypothermia, Induced ; In Vitro Techniques ; Ischemic Preconditioning, Myocardial ; L-Lactate Dehydrogenase - metabolism ; Male ; Mitochondria, Heart - metabolism ; Mitochondria, Heart - pathology ; Mitochondrial Membrane Transport Proteins - metabolism ; Mitochondrial Permeability Transition Pore ; Mitochondrial Swelling ; Multienzyme Complexes - metabolism ; Myocardial Reperfusion Injury - complications ; Myocardial Reperfusion Injury - metabolism ; Myocardial Reperfusion Injury - pathology ; Myocardial Reperfusion Injury - physiopathology ; Myocardial Reperfusion Injury - prevention &amp; control ; Myocardium - metabolism ; Myocardium - pathology ; NAD - metabolism ; Necrosis ; Oxidative Stress ; Perfusion ; Phosphocreatine - metabolism ; Phosphorylation ; Protein Carbonylation ; Protein Kinase C-epsilon - metabolism ; Protein Serine-Threonine Kinases - metabolism ; Protein Transport ; Rats ; Rats, Wistar ; Reactive Oxygen Species - metabolism ; Rewarming ; Signal Transduction ; Temperature</subject><ispartof>The Journal of physiology, 2007-06, Vol.581 (3), p.1147-1161</ispartof><rights>2007 The Journal of Physiology © 2007 The Physiological Society</rights><rights>2007 The Authors. Journal compilation © 2007 The Physiological Society 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4899-d3ed65a2e2416bf225cb6763a9af6aa457257881541e78fcdb91c94af884b0373</citedby><cites>FETCH-LOGICAL-c4899-d3ed65a2e2416bf225cb6763a9af6aa457257881541e78fcdb91c94af884b0373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1976396/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1976396/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,1419,1435,27933,27934,45583,45584,46418,46842,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17395631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khaliulin, Igor</creatorcontrib><creatorcontrib>Clarke, Samantha J.</creatorcontrib><creatorcontrib>Lin, Hua</creatorcontrib><creatorcontrib>Parker, Joanna</creatorcontrib><creatorcontrib>Suleiman, M.‐Saadeh</creatorcontrib><creatorcontrib>Halestrap, Andrew P.</creatorcontrib><title>Temperature preconditioning of isolated rat hearts – a potent cardioprotective mechanism involving a reduction in oxidative stress and inhibition of the mitochondrial permeability transition pore</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>We investigate whether temperature preconditioning (TP), induced by short-term hypothermic perfusion and rewarming, may protect hearts against ischaemic/reperfusion injury like ischaemic preconditioning ( IP ). Isolated rat hearts were perfused for 40 min, followed by 25 min global ischaemia and 60 min reperfusion (37°C). During pre-ischaemia, IP hearts underwent three cycles of 2 min global ischaemia and 3 min reperfusion at 37°C, whereas TP hearts received three cycles of 2 min hypothermic perfusion (26°C) interspersed by 3 min normothermic perfusion. Other hearts received a single 6 min hypothermic perfusion (SHP) before ischaemia. Both IP and TP protocols increased levels of high energy phosphates in the pre-ischaemic heart. During reperfusion, TP improved haemodynamic recovery, decreased arrhythmias and reduced necrotic damage (lactate dehydrogenase release) more than IP or SHP. Measurements of tissue NAD + levels and calcium-induced swelling of mitochondria isolated at 3 min reperfusion were consistent with greater inhibition of the mitochondrial permeability transition at reperfusion by TP than IP; this correlated with decreased protein carbonylation, a surrogate marker for oxidative stress. TP increased protein kinase Cε (PKCε) translocation to the particulate fraction and pretreatment with chelerythrine (PKC inhibitor) blocked the protective effect of TP. TP also increased phosphorylation of AMP-activated protein kinase (AMPK) after 5 min index ischaemia, but not before ischaemia. Compound C (AMPK inhibitor) partially blocked cardioprotection by TP, suggesting that both PKC and AMPK may mediate the effects of TP. The presence of N -(2-mercaptopropionyl) glycine during TP also abolished cardioprotection, indicating an involvement of free radicals in the signalling mechanism.</description><subject>AMP-Activated Protein Kinases</subject><subject>Animals</subject><subject>Arrhythmias, Cardiac - etiology</subject><subject>Arrhythmias, Cardiac - metabolism</subject><subject>Arrhythmias, Cardiac - prevention &amp; control</subject><subject>Cardiovascular</subject><subject>Coronary Circulation</subject><subject>Hypothermia, Induced</subject><subject>In Vitro Techniques</subject><subject>Ischemic Preconditioning, Myocardial</subject><subject>L-Lactate Dehydrogenase - metabolism</subject><subject>Male</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Mitochondria, Heart - pathology</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Mitochondrial Permeability Transition Pore</subject><subject>Mitochondrial Swelling</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Myocardial Reperfusion Injury - complications</subject><subject>Myocardial Reperfusion Injury - metabolism</subject><subject>Myocardial Reperfusion Injury - pathology</subject><subject>Myocardial Reperfusion Injury - physiopathology</subject><subject>Myocardial Reperfusion Injury - prevention &amp; control</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - pathology</subject><subject>NAD - metabolism</subject><subject>Necrosis</subject><subject>Oxidative Stress</subject><subject>Perfusion</subject><subject>Phosphocreatine - metabolism</subject><subject>Phosphorylation</subject><subject>Protein Carbonylation</subject><subject>Protein Kinase C-epsilon - metabolism</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Protein Transport</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Rewarming</subject><subject>Signal Transduction</subject><subject>Temperature</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqNkkuO1DAQhiMEYpqBGyDkFWLTjR9JHG-Q0IinRoLFsLYqTqXjURIH290zveMO3ICjDBuOhTNpXjtWlu2vvr9kV5Y9ZnTDGBPPL6fuEKzrN5xSuWGCilLdyVYsL9VaSiXuZitKOV8LWbCT7EEIl5QmSqn72QmTQhWlYKvsxwUOE3qIO49k8mjc2Nho3WjHLXEtscH1ELEhCSEdgo-BfP928-XmKwEyuYhjJAZ8Y93k085Eu0cyoOlgtGEgdty7fj-7gHhsdmZWp1Pirm0Dt3CIHkMgMDbpvLP1bfocHbtkstGZLvXkLfQkNTog1La38UCihzEs8OQ8PszutdAHfHRcT7NPr19dnL1dn3948-7s5fna5JVS60ZgUxbAkeesrFvOC1OXshSgoC0B8kLyQlYVK3KGsmpNUytmVA5tVeU1FVKcZi8W77SrB2xMegAPvZ68HcAftAOr_70Zbae3bq-ZSjGqTIKnR4F3n3cYoh5sMNj3MKLbBS1pySmTNIH5AhrvQvDY_g5hVM8joH-NgJ5HQC8jkMqe_N3gn6LjnydALcCV7fHwX1J98f4j52yWP1tqO7vtrqxHvdDBGYvxoIuKaZE8uRQ_AeNH2ik</recordid><startdate>20070615</startdate><enddate>20070615</enddate><creator>Khaliulin, Igor</creator><creator>Clarke, Samantha J.</creator><creator>Lin, Hua</creator><creator>Parker, Joanna</creator><creator>Suleiman, M.‐Saadeh</creator><creator>Halestrap, Andrew P.</creator><general>The Physiological Society</general><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070615</creationdate><title>Temperature preconditioning of isolated rat hearts – a potent cardioprotective mechanism involving a reduction in oxidative stress and inhibition of the mitochondrial permeability transition pore</title><author>Khaliulin, Igor ; Clarke, Samantha J. ; Lin, Hua ; Parker, Joanna ; Suleiman, M.‐Saadeh ; Halestrap, Andrew P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4899-d3ed65a2e2416bf225cb6763a9af6aa457257881541e78fcdb91c94af884b0373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>AMP-Activated Protein Kinases</topic><topic>Animals</topic><topic>Arrhythmias, Cardiac - etiology</topic><topic>Arrhythmias, Cardiac - metabolism</topic><topic>Arrhythmias, Cardiac - prevention &amp; control</topic><topic>Cardiovascular</topic><topic>Coronary Circulation</topic><topic>Hypothermia, Induced</topic><topic>In Vitro Techniques</topic><topic>Ischemic Preconditioning, Myocardial</topic><topic>L-Lactate Dehydrogenase - metabolism</topic><topic>Male</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Mitochondria, Heart - pathology</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Mitochondrial Permeability Transition Pore</topic><topic>Mitochondrial Swelling</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Myocardial Reperfusion Injury - complications</topic><topic>Myocardial Reperfusion Injury - metabolism</topic><topic>Myocardial Reperfusion Injury - pathology</topic><topic>Myocardial Reperfusion Injury - physiopathology</topic><topic>Myocardial Reperfusion Injury - prevention &amp; control</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - pathology</topic><topic>NAD - metabolism</topic><topic>Necrosis</topic><topic>Oxidative Stress</topic><topic>Perfusion</topic><topic>Phosphocreatine - metabolism</topic><topic>Phosphorylation</topic><topic>Protein Carbonylation</topic><topic>Protein Kinase C-epsilon - metabolism</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Protein Transport</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Rewarming</topic><topic>Signal Transduction</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khaliulin, Igor</creatorcontrib><creatorcontrib>Clarke, Samantha J.</creatorcontrib><creatorcontrib>Lin, Hua</creatorcontrib><creatorcontrib>Parker, Joanna</creatorcontrib><creatorcontrib>Suleiman, M.‐Saadeh</creatorcontrib><creatorcontrib>Halestrap, Andrew P.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khaliulin, Igor</au><au>Clarke, Samantha J.</au><au>Lin, Hua</au><au>Parker, Joanna</au><au>Suleiman, M.‐Saadeh</au><au>Halestrap, Andrew P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature preconditioning of isolated rat hearts – a potent cardioprotective mechanism involving a reduction in oxidative stress and inhibition of the mitochondrial permeability transition pore</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2007-06-15</date><risdate>2007</risdate><volume>581</volume><issue>3</issue><spage>1147</spage><epage>1161</epage><pages>1147-1161</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract>We investigate whether temperature preconditioning (TP), induced by short-term hypothermic perfusion and rewarming, may protect hearts against ischaemic/reperfusion injury like ischaemic preconditioning ( IP ). Isolated rat hearts were perfused for 40 min, followed by 25 min global ischaemia and 60 min reperfusion (37°C). During pre-ischaemia, IP hearts underwent three cycles of 2 min global ischaemia and 3 min reperfusion at 37°C, whereas TP hearts received three cycles of 2 min hypothermic perfusion (26°C) interspersed by 3 min normothermic perfusion. Other hearts received a single 6 min hypothermic perfusion (SHP) before ischaemia. Both IP and TP protocols increased levels of high energy phosphates in the pre-ischaemic heart. During reperfusion, TP improved haemodynamic recovery, decreased arrhythmias and reduced necrotic damage (lactate dehydrogenase release) more than IP or SHP. Measurements of tissue NAD + levels and calcium-induced swelling of mitochondria isolated at 3 min reperfusion were consistent with greater inhibition of the mitochondrial permeability transition at reperfusion by TP than IP; this correlated with decreased protein carbonylation, a surrogate marker for oxidative stress. TP increased protein kinase Cε (PKCε) translocation to the particulate fraction and pretreatment with chelerythrine (PKC inhibitor) blocked the protective effect of TP. TP also increased phosphorylation of AMP-activated protein kinase (AMPK) after 5 min index ischaemia, but not before ischaemia. Compound C (AMPK inhibitor) partially blocked cardioprotection by TP, suggesting that both PKC and AMPK may mediate the effects of TP. The presence of N -(2-mercaptopropionyl) glycine during TP also abolished cardioprotection, indicating an involvement of free radicals in the signalling mechanism.</abstract><cop>Oxford, UK</cop><pub>The Physiological Society</pub><pmid>17395631</pmid><doi>10.1113/jphysiol.2007.130369</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3751
ispartof The Journal of physiology, 2007-06, Vol.581 (3), p.1147-1161
issn 0022-3751
1469-7793
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1976396
source MEDLINE; Access via Wiley Online Library; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central
subjects AMP-Activated Protein Kinases
Animals
Arrhythmias, Cardiac - etiology
Arrhythmias, Cardiac - metabolism
Arrhythmias, Cardiac - prevention & control
Cardiovascular
Coronary Circulation
Hypothermia, Induced
In Vitro Techniques
Ischemic Preconditioning, Myocardial
L-Lactate Dehydrogenase - metabolism
Male
Mitochondria, Heart - metabolism
Mitochondria, Heart - pathology
Mitochondrial Membrane Transport Proteins - metabolism
Mitochondrial Permeability Transition Pore
Mitochondrial Swelling
Multienzyme Complexes - metabolism
Myocardial Reperfusion Injury - complications
Myocardial Reperfusion Injury - metabolism
Myocardial Reperfusion Injury - pathology
Myocardial Reperfusion Injury - physiopathology
Myocardial Reperfusion Injury - prevention & control
Myocardium - metabolism
Myocardium - pathology
NAD - metabolism
Necrosis
Oxidative Stress
Perfusion
Phosphocreatine - metabolism
Phosphorylation
Protein Carbonylation
Protein Kinase C-epsilon - metabolism
Protein Serine-Threonine Kinases - metabolism
Protein Transport
Rats
Rats, Wistar
Reactive Oxygen Species - metabolism
Rewarming
Signal Transduction
Temperature
title Temperature preconditioning of isolated rat hearts – a potent cardioprotective mechanism involving a reduction in oxidative stress and inhibition of the mitochondrial permeability transition pore
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T11%3A27%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20preconditioning%20of%20isolated%20rat%20hearts%20%C3%A2%C2%80%C2%93%20a%20potent%20cardioprotective%20mechanism%20involving%20a%20reduction%20in%20oxidative%20stress%20and%20inhibition%20of%20the%20mitochondrial%20permeability%20transition%20pore&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Khaliulin,%20Igor&rft.date=2007-06-15&rft.volume=581&rft.issue=3&rft.spage=1147&rft.epage=1161&rft.pages=1147-1161&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1113/jphysiol.2007.130369&rft_dat=%3Cproquest_pubme%3E70620170%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70620170&rft_id=info:pmid/17395631&rfr_iscdi=true