Three-dimensional distribution of cardiac Na+-Ca2+ exchanger and ryanodine receptor during development
Mechanisms of cardiac excitation-contraction coupling in neonates are still not clearly defined. Previous work in neonates shows reverse-mode Na(+)-Ca(2+) exchange to be the primary route of Ca(2+) entry during systole and the neonatal sarcoplasmic reticulum to have similar capability as that of adu...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2007-10, Vol.93 (7), p.2504-2518 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2518 |
---|---|
container_issue | 7 |
container_start_page | 2504 |
container_title | Biophysical journal |
container_volume | 93 |
creator | Dan, Pauline Lin, Eric Huang, Jingbo Biln, Perveen Tibbits, Glen F |
description | Mechanisms of cardiac excitation-contraction coupling in neonates are still not clearly defined. Previous work in neonates shows reverse-mode Na(+)-Ca(2+) exchange to be the primary route of Ca(2+) entry during systole and the neonatal sarcoplasmic reticulum to have similar capability as that of adult in storing and releasing Ca(2+). We investigated Na(+)-Ca(2+) exchanger (NCX) and ryanodine receptor (RyR) distribution in developing ventricular myocytes using immunofluorescence, confocal microscopy, and digital image analysis. In neonates, both NCX and RyR clusters on the surface of the cell displayed a short longitudinal periodicity of approximately 0.7 microm. However, by adulthood, both proteins were also found in the interior. In the adult, clusters of NCX on the surface of the cell retained the approximately 0.7-microm periodicity whereas clusters of RyR adopted a longer longitudinal periodicity of approximately 2.0 microm. This suggests that neonatal myocytes also have a peri-M-line RyR distribution that is absent in adult myocytes. NCX and RyR colocalized voxel density was maximal in neonates and declined significantly with ontogeny. We conclude in newborns, Ca(2+) influx via NCX could potentially activate the dense network of peripheral Ca(2+) stores via peripheral couplings, evoking Ca(2+)-induced Ca(2+) release. |
doi_str_mv | 10.1529/biophysj.107.104943 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1965441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68242550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-c8d338fbebaf64226b0023617ac1470947fdafda7cb6a07934dc4e5e48b96f53</originalsourceid><addsrcrecordid>eNpVUctqHDEQFMEh3jj5gkDQyRczjt6auRjMkheY5LJ3oZF6dmVmpbE0Y7x_H4Xd2A500_SjqhoKoU-UXFPJui99SNPuUO6vKdE1RSf4G7SiUrCGkFadoRUhRDVcdPIcvS_lnhDKJKHv0DnVUmrddis0bHYZoPFhD7GEFO2IfShzDv0y1xanATubfbAO_7JXzdqyKwxPbmfjFjK20eN8sDH5EAFncDDNKWO_5BC32MMjjGmqzPMH9HawY4GPp3qBNt--btY_mrvf33-ub-8axzmfG9d6ztuhh94OSjCmekIYV1RbR4UmndCDtzW065UluuPCOwESRNt3apD8At0caael34N3VTnb0Uw57G0-mGSD-X8Tw85s06OhnZJC0EpweSLI6WGBMpt9KA7G0UZISzGqZYJJSeohPx66nErJMDyLUGL-2mP-2VMH2hztqajPr_97wZz84H8APvSROQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68242550</pqid></control><display><type>article</type><title>Three-dimensional distribution of cardiac Na+-Ca2+ exchanger and ryanodine receptor during development</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Dan, Pauline ; Lin, Eric ; Huang, Jingbo ; Biln, Perveen ; Tibbits, Glen F</creator><creatorcontrib>Dan, Pauline ; Lin, Eric ; Huang, Jingbo ; Biln, Perveen ; Tibbits, Glen F</creatorcontrib><description>Mechanisms of cardiac excitation-contraction coupling in neonates are still not clearly defined. Previous work in neonates shows reverse-mode Na(+)-Ca(2+) exchange to be the primary route of Ca(2+) entry during systole and the neonatal sarcoplasmic reticulum to have similar capability as that of adult in storing and releasing Ca(2+). We investigated Na(+)-Ca(2+) exchanger (NCX) and ryanodine receptor (RyR) distribution in developing ventricular myocytes using immunofluorescence, confocal microscopy, and digital image analysis. In neonates, both NCX and RyR clusters on the surface of the cell displayed a short longitudinal periodicity of approximately 0.7 microm. However, by adulthood, both proteins were also found in the interior. In the adult, clusters of NCX on the surface of the cell retained the approximately 0.7-microm periodicity whereas clusters of RyR adopted a longer longitudinal periodicity of approximately 2.0 microm. This suggests that neonatal myocytes also have a peri-M-line RyR distribution that is absent in adult myocytes. NCX and RyR colocalized voxel density was maximal in neonates and declined significantly with ontogeny. We conclude in newborns, Ca(2+) influx via NCX could potentially activate the dense network of peripheral Ca(2+) stores via peripheral couplings, evoking Ca(2+)-induced Ca(2+) release.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.107.104943</identifier><identifier>PMID: 17557789</identifier><language>eng</language><publisher>United States: Biophysical Society</publisher><subject>Animals ; Biophysics - methods ; Calcium - metabolism ; Cluster Analysis ; Gene Expression Regulation, Developmental ; Heart Ventricles - metabolism ; Heart Ventricles - pathology ; Image Processing, Computer-Assisted ; Immunohistochemistry ; Models, Statistical ; Muscle Cells - metabolism ; Protein Conformation ; Rabbits ; Ryanodine Receptor Calcium Release Channel - chemistry ; Sarcoplasmic Reticulum - metabolism ; Sodium-Calcium Exchanger - chemistry ; Spectroscopy, Imaging, Other Techniques</subject><ispartof>Biophysical journal, 2007-10, Vol.93 (7), p.2504-2518</ispartof><rights>Copyright © 2007, Biophysical Society 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-c8d338fbebaf64226b0023617ac1470947fdafda7cb6a07934dc4e5e48b96f53</citedby><cites>FETCH-LOGICAL-c333t-c8d338fbebaf64226b0023617ac1470947fdafda7cb6a07934dc4e5e48b96f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1965441/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1965441/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17557789$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dan, Pauline</creatorcontrib><creatorcontrib>Lin, Eric</creatorcontrib><creatorcontrib>Huang, Jingbo</creatorcontrib><creatorcontrib>Biln, Perveen</creatorcontrib><creatorcontrib>Tibbits, Glen F</creatorcontrib><title>Three-dimensional distribution of cardiac Na+-Ca2+ exchanger and ryanodine receptor during development</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Mechanisms of cardiac excitation-contraction coupling in neonates are still not clearly defined. Previous work in neonates shows reverse-mode Na(+)-Ca(2+) exchange to be the primary route of Ca(2+) entry during systole and the neonatal sarcoplasmic reticulum to have similar capability as that of adult in storing and releasing Ca(2+). We investigated Na(+)-Ca(2+) exchanger (NCX) and ryanodine receptor (RyR) distribution in developing ventricular myocytes using immunofluorescence, confocal microscopy, and digital image analysis. In neonates, both NCX and RyR clusters on the surface of the cell displayed a short longitudinal periodicity of approximately 0.7 microm. However, by adulthood, both proteins were also found in the interior. In the adult, clusters of NCX on the surface of the cell retained the approximately 0.7-microm periodicity whereas clusters of RyR adopted a longer longitudinal periodicity of approximately 2.0 microm. This suggests that neonatal myocytes also have a peri-M-line RyR distribution that is absent in adult myocytes. NCX and RyR colocalized voxel density was maximal in neonates and declined significantly with ontogeny. We conclude in newborns, Ca(2+) influx via NCX could potentially activate the dense network of peripheral Ca(2+) stores via peripheral couplings, evoking Ca(2+)-induced Ca(2+) release.</description><subject>Animals</subject><subject>Biophysics - methods</subject><subject>Calcium - metabolism</subject><subject>Cluster Analysis</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Heart Ventricles - metabolism</subject><subject>Heart Ventricles - pathology</subject><subject>Image Processing, Computer-Assisted</subject><subject>Immunohistochemistry</subject><subject>Models, Statistical</subject><subject>Muscle Cells - metabolism</subject><subject>Protein Conformation</subject><subject>Rabbits</subject><subject>Ryanodine Receptor Calcium Release Channel - chemistry</subject><subject>Sarcoplasmic Reticulum - metabolism</subject><subject>Sodium-Calcium Exchanger - chemistry</subject><subject>Spectroscopy, Imaging, Other Techniques</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUctqHDEQFMEh3jj5gkDQyRczjt6auRjMkheY5LJ3oZF6dmVmpbE0Y7x_H4Xd2A500_SjqhoKoU-UXFPJui99SNPuUO6vKdE1RSf4G7SiUrCGkFadoRUhRDVcdPIcvS_lnhDKJKHv0DnVUmrddis0bHYZoPFhD7GEFO2IfShzDv0y1xanATubfbAO_7JXzdqyKwxPbmfjFjK20eN8sDH5EAFncDDNKWO_5BC32MMjjGmqzPMH9HawY4GPp3qBNt--btY_mrvf33-ub-8axzmfG9d6ztuhh94OSjCmekIYV1RbR4UmndCDtzW065UluuPCOwESRNt3apD8At0caael34N3VTnb0Uw57G0-mGSD-X8Tw85s06OhnZJC0EpweSLI6WGBMpt9KA7G0UZISzGqZYJJSeohPx66nErJMDyLUGL-2mP-2VMH2hztqajPr_97wZz84H8APvSROQ</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Dan, Pauline</creator><creator>Lin, Eric</creator><creator>Huang, Jingbo</creator><creator>Biln, Perveen</creator><creator>Tibbits, Glen F</creator><general>Biophysical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20071001</creationdate><title>Three-dimensional distribution of cardiac Na+-Ca2+ exchanger and ryanodine receptor during development</title><author>Dan, Pauline ; Lin, Eric ; Huang, Jingbo ; Biln, Perveen ; Tibbits, Glen F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-c8d338fbebaf64226b0023617ac1470947fdafda7cb6a07934dc4e5e48b96f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Biophysics - methods</topic><topic>Calcium - metabolism</topic><topic>Cluster Analysis</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Heart Ventricles - metabolism</topic><topic>Heart Ventricles - pathology</topic><topic>Image Processing, Computer-Assisted</topic><topic>Immunohistochemistry</topic><topic>Models, Statistical</topic><topic>Muscle Cells - metabolism</topic><topic>Protein Conformation</topic><topic>Rabbits</topic><topic>Ryanodine Receptor Calcium Release Channel - chemistry</topic><topic>Sarcoplasmic Reticulum - metabolism</topic><topic>Sodium-Calcium Exchanger - chemistry</topic><topic>Spectroscopy, Imaging, Other Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dan, Pauline</creatorcontrib><creatorcontrib>Lin, Eric</creatorcontrib><creatorcontrib>Huang, Jingbo</creatorcontrib><creatorcontrib>Biln, Perveen</creatorcontrib><creatorcontrib>Tibbits, Glen F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dan, Pauline</au><au>Lin, Eric</au><au>Huang, Jingbo</au><au>Biln, Perveen</au><au>Tibbits, Glen F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional distribution of cardiac Na+-Ca2+ exchanger and ryanodine receptor during development</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2007-10-01</date><risdate>2007</risdate><volume>93</volume><issue>7</issue><spage>2504</spage><epage>2518</epage><pages>2504-2518</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Mechanisms of cardiac excitation-contraction coupling in neonates are still not clearly defined. Previous work in neonates shows reverse-mode Na(+)-Ca(2+) exchange to be the primary route of Ca(2+) entry during systole and the neonatal sarcoplasmic reticulum to have similar capability as that of adult in storing and releasing Ca(2+). We investigated Na(+)-Ca(2+) exchanger (NCX) and ryanodine receptor (RyR) distribution in developing ventricular myocytes using immunofluorescence, confocal microscopy, and digital image analysis. In neonates, both NCX and RyR clusters on the surface of the cell displayed a short longitudinal periodicity of approximately 0.7 microm. However, by adulthood, both proteins were also found in the interior. In the adult, clusters of NCX on the surface of the cell retained the approximately 0.7-microm periodicity whereas clusters of RyR adopted a longer longitudinal periodicity of approximately 2.0 microm. This suggests that neonatal myocytes also have a peri-M-line RyR distribution that is absent in adult myocytes. NCX and RyR colocalized voxel density was maximal in neonates and declined significantly with ontogeny. We conclude in newborns, Ca(2+) influx via NCX could potentially activate the dense network of peripheral Ca(2+) stores via peripheral couplings, evoking Ca(2+)-induced Ca(2+) release.</abstract><cop>United States</cop><pub>Biophysical Society</pub><pmid>17557789</pmid><doi>10.1529/biophysj.107.104943</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2007-10, Vol.93 (7), p.2504-2518 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1965441 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals Biophysics - methods Calcium - metabolism Cluster Analysis Gene Expression Regulation, Developmental Heart Ventricles - metabolism Heart Ventricles - pathology Image Processing, Computer-Assisted Immunohistochemistry Models, Statistical Muscle Cells - metabolism Protein Conformation Rabbits Ryanodine Receptor Calcium Release Channel - chemistry Sarcoplasmic Reticulum - metabolism Sodium-Calcium Exchanger - chemistry Spectroscopy, Imaging, Other Techniques |
title | Three-dimensional distribution of cardiac Na+-Ca2+ exchanger and ryanodine receptor during development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20distribution%20of%20cardiac%20Na+-Ca2+%20exchanger%20and%20ryanodine%20receptor%20during%20development&rft.jtitle=Biophysical%20journal&rft.au=Dan,%20Pauline&rft.date=2007-10-01&rft.volume=93&rft.issue=7&rft.spage=2504&rft.epage=2518&rft.pages=2504-2518&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.107.104943&rft_dat=%3Cproquest_pubme%3E68242550%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68242550&rft_id=info:pmid/17557789&rfr_iscdi=true |