Three-dimensional distribution of cardiac Na+-Ca2+ exchanger and ryanodine receptor during development

Mechanisms of cardiac excitation-contraction coupling in neonates are still not clearly defined. Previous work in neonates shows reverse-mode Na(+)-Ca(2+) exchange to be the primary route of Ca(2+) entry during systole and the neonatal sarcoplasmic reticulum to have similar capability as that of adu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2007-10, Vol.93 (7), p.2504-2518
Hauptverfasser: Dan, Pauline, Lin, Eric, Huang, Jingbo, Biln, Perveen, Tibbits, Glen F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2518
container_issue 7
container_start_page 2504
container_title Biophysical journal
container_volume 93
creator Dan, Pauline
Lin, Eric
Huang, Jingbo
Biln, Perveen
Tibbits, Glen F
description Mechanisms of cardiac excitation-contraction coupling in neonates are still not clearly defined. Previous work in neonates shows reverse-mode Na(+)-Ca(2+) exchange to be the primary route of Ca(2+) entry during systole and the neonatal sarcoplasmic reticulum to have similar capability as that of adult in storing and releasing Ca(2+). We investigated Na(+)-Ca(2+) exchanger (NCX) and ryanodine receptor (RyR) distribution in developing ventricular myocytes using immunofluorescence, confocal microscopy, and digital image analysis. In neonates, both NCX and RyR clusters on the surface of the cell displayed a short longitudinal periodicity of approximately 0.7 microm. However, by adulthood, both proteins were also found in the interior. In the adult, clusters of NCX on the surface of the cell retained the approximately 0.7-microm periodicity whereas clusters of RyR adopted a longer longitudinal periodicity of approximately 2.0 microm. This suggests that neonatal myocytes also have a peri-M-line RyR distribution that is absent in adult myocytes. NCX and RyR colocalized voxel density was maximal in neonates and declined significantly with ontogeny. We conclude in newborns, Ca(2+) influx via NCX could potentially activate the dense network of peripheral Ca(2+) stores via peripheral couplings, evoking Ca(2+)-induced Ca(2+) release.
doi_str_mv 10.1529/biophysj.107.104943
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1965441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68242550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-c8d338fbebaf64226b0023617ac1470947fdafda7cb6a07934dc4e5e48b96f53</originalsourceid><addsrcrecordid>eNpVUctqHDEQFMEh3jj5gkDQyRczjt6auRjMkheY5LJ3oZF6dmVmpbE0Y7x_H4Xd2A500_SjqhoKoU-UXFPJui99SNPuUO6vKdE1RSf4G7SiUrCGkFadoRUhRDVcdPIcvS_lnhDKJKHv0DnVUmrddis0bHYZoPFhD7GEFO2IfShzDv0y1xanATubfbAO_7JXzdqyKwxPbmfjFjK20eN8sDH5EAFncDDNKWO_5BC32MMjjGmqzPMH9HawY4GPp3qBNt--btY_mrvf33-ub-8axzmfG9d6ztuhh94OSjCmekIYV1RbR4UmndCDtzW065UluuPCOwESRNt3apD8At0caael34N3VTnb0Uw57G0-mGSD-X8Tw85s06OhnZJC0EpweSLI6WGBMpt9KA7G0UZISzGqZYJJSeohPx66nErJMDyLUGL-2mP-2VMH2hztqajPr_97wZz84H8APvSROQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68242550</pqid></control><display><type>article</type><title>Three-dimensional distribution of cardiac Na+-Ca2+ exchanger and ryanodine receptor during development</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Dan, Pauline ; Lin, Eric ; Huang, Jingbo ; Biln, Perveen ; Tibbits, Glen F</creator><creatorcontrib>Dan, Pauline ; Lin, Eric ; Huang, Jingbo ; Biln, Perveen ; Tibbits, Glen F</creatorcontrib><description>Mechanisms of cardiac excitation-contraction coupling in neonates are still not clearly defined. Previous work in neonates shows reverse-mode Na(+)-Ca(2+) exchange to be the primary route of Ca(2+) entry during systole and the neonatal sarcoplasmic reticulum to have similar capability as that of adult in storing and releasing Ca(2+). We investigated Na(+)-Ca(2+) exchanger (NCX) and ryanodine receptor (RyR) distribution in developing ventricular myocytes using immunofluorescence, confocal microscopy, and digital image analysis. In neonates, both NCX and RyR clusters on the surface of the cell displayed a short longitudinal periodicity of approximately 0.7 microm. However, by adulthood, both proteins were also found in the interior. In the adult, clusters of NCX on the surface of the cell retained the approximately 0.7-microm periodicity whereas clusters of RyR adopted a longer longitudinal periodicity of approximately 2.0 microm. This suggests that neonatal myocytes also have a peri-M-line RyR distribution that is absent in adult myocytes. NCX and RyR colocalized voxel density was maximal in neonates and declined significantly with ontogeny. We conclude in newborns, Ca(2+) influx via NCX could potentially activate the dense network of peripheral Ca(2+) stores via peripheral couplings, evoking Ca(2+)-induced Ca(2+) release.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.107.104943</identifier><identifier>PMID: 17557789</identifier><language>eng</language><publisher>United States: Biophysical Society</publisher><subject>Animals ; Biophysics - methods ; Calcium - metabolism ; Cluster Analysis ; Gene Expression Regulation, Developmental ; Heart Ventricles - metabolism ; Heart Ventricles - pathology ; Image Processing, Computer-Assisted ; Immunohistochemistry ; Models, Statistical ; Muscle Cells - metabolism ; Protein Conformation ; Rabbits ; Ryanodine Receptor Calcium Release Channel - chemistry ; Sarcoplasmic Reticulum - metabolism ; Sodium-Calcium Exchanger - chemistry ; Spectroscopy, Imaging, Other Techniques</subject><ispartof>Biophysical journal, 2007-10, Vol.93 (7), p.2504-2518</ispartof><rights>Copyright © 2007, Biophysical Society 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-c8d338fbebaf64226b0023617ac1470947fdafda7cb6a07934dc4e5e48b96f53</citedby><cites>FETCH-LOGICAL-c333t-c8d338fbebaf64226b0023617ac1470947fdafda7cb6a07934dc4e5e48b96f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1965441/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1965441/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17557789$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dan, Pauline</creatorcontrib><creatorcontrib>Lin, Eric</creatorcontrib><creatorcontrib>Huang, Jingbo</creatorcontrib><creatorcontrib>Biln, Perveen</creatorcontrib><creatorcontrib>Tibbits, Glen F</creatorcontrib><title>Three-dimensional distribution of cardiac Na+-Ca2+ exchanger and ryanodine receptor during development</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Mechanisms of cardiac excitation-contraction coupling in neonates are still not clearly defined. Previous work in neonates shows reverse-mode Na(+)-Ca(2+) exchange to be the primary route of Ca(2+) entry during systole and the neonatal sarcoplasmic reticulum to have similar capability as that of adult in storing and releasing Ca(2+). We investigated Na(+)-Ca(2+) exchanger (NCX) and ryanodine receptor (RyR) distribution in developing ventricular myocytes using immunofluorescence, confocal microscopy, and digital image analysis. In neonates, both NCX and RyR clusters on the surface of the cell displayed a short longitudinal periodicity of approximately 0.7 microm. However, by adulthood, both proteins were also found in the interior. In the adult, clusters of NCX on the surface of the cell retained the approximately 0.7-microm periodicity whereas clusters of RyR adopted a longer longitudinal periodicity of approximately 2.0 microm. This suggests that neonatal myocytes also have a peri-M-line RyR distribution that is absent in adult myocytes. NCX and RyR colocalized voxel density was maximal in neonates and declined significantly with ontogeny. We conclude in newborns, Ca(2+) influx via NCX could potentially activate the dense network of peripheral Ca(2+) stores via peripheral couplings, evoking Ca(2+)-induced Ca(2+) release.</description><subject>Animals</subject><subject>Biophysics - methods</subject><subject>Calcium - metabolism</subject><subject>Cluster Analysis</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Heart Ventricles - metabolism</subject><subject>Heart Ventricles - pathology</subject><subject>Image Processing, Computer-Assisted</subject><subject>Immunohistochemistry</subject><subject>Models, Statistical</subject><subject>Muscle Cells - metabolism</subject><subject>Protein Conformation</subject><subject>Rabbits</subject><subject>Ryanodine Receptor Calcium Release Channel - chemistry</subject><subject>Sarcoplasmic Reticulum - metabolism</subject><subject>Sodium-Calcium Exchanger - chemistry</subject><subject>Spectroscopy, Imaging, Other Techniques</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUctqHDEQFMEh3jj5gkDQyRczjt6auRjMkheY5LJ3oZF6dmVmpbE0Y7x_H4Xd2A500_SjqhoKoU-UXFPJui99SNPuUO6vKdE1RSf4G7SiUrCGkFadoRUhRDVcdPIcvS_lnhDKJKHv0DnVUmrddis0bHYZoPFhD7GEFO2IfShzDv0y1xanATubfbAO_7JXzdqyKwxPbmfjFjK20eN8sDH5EAFncDDNKWO_5BC32MMjjGmqzPMH9HawY4GPp3qBNt--btY_mrvf33-ub-8axzmfG9d6ztuhh94OSjCmekIYV1RbR4UmndCDtzW065UluuPCOwESRNt3apD8At0caael34N3VTnb0Uw57G0-mGSD-X8Tw85s06OhnZJC0EpweSLI6WGBMpt9KA7G0UZISzGqZYJJSeohPx66nErJMDyLUGL-2mP-2VMH2hztqajPr_97wZz84H8APvSROQ</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Dan, Pauline</creator><creator>Lin, Eric</creator><creator>Huang, Jingbo</creator><creator>Biln, Perveen</creator><creator>Tibbits, Glen F</creator><general>Biophysical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20071001</creationdate><title>Three-dimensional distribution of cardiac Na+-Ca2+ exchanger and ryanodine receptor during development</title><author>Dan, Pauline ; Lin, Eric ; Huang, Jingbo ; Biln, Perveen ; Tibbits, Glen F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-c8d338fbebaf64226b0023617ac1470947fdafda7cb6a07934dc4e5e48b96f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Biophysics - methods</topic><topic>Calcium - metabolism</topic><topic>Cluster Analysis</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Heart Ventricles - metabolism</topic><topic>Heart Ventricles - pathology</topic><topic>Image Processing, Computer-Assisted</topic><topic>Immunohistochemistry</topic><topic>Models, Statistical</topic><topic>Muscle Cells - metabolism</topic><topic>Protein Conformation</topic><topic>Rabbits</topic><topic>Ryanodine Receptor Calcium Release Channel - chemistry</topic><topic>Sarcoplasmic Reticulum - metabolism</topic><topic>Sodium-Calcium Exchanger - chemistry</topic><topic>Spectroscopy, Imaging, Other Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dan, Pauline</creatorcontrib><creatorcontrib>Lin, Eric</creatorcontrib><creatorcontrib>Huang, Jingbo</creatorcontrib><creatorcontrib>Biln, Perveen</creatorcontrib><creatorcontrib>Tibbits, Glen F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dan, Pauline</au><au>Lin, Eric</au><au>Huang, Jingbo</au><au>Biln, Perveen</au><au>Tibbits, Glen F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional distribution of cardiac Na+-Ca2+ exchanger and ryanodine receptor during development</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2007-10-01</date><risdate>2007</risdate><volume>93</volume><issue>7</issue><spage>2504</spage><epage>2518</epage><pages>2504-2518</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Mechanisms of cardiac excitation-contraction coupling in neonates are still not clearly defined. Previous work in neonates shows reverse-mode Na(+)-Ca(2+) exchange to be the primary route of Ca(2+) entry during systole and the neonatal sarcoplasmic reticulum to have similar capability as that of adult in storing and releasing Ca(2+). We investigated Na(+)-Ca(2+) exchanger (NCX) and ryanodine receptor (RyR) distribution in developing ventricular myocytes using immunofluorescence, confocal microscopy, and digital image analysis. In neonates, both NCX and RyR clusters on the surface of the cell displayed a short longitudinal periodicity of approximately 0.7 microm. However, by adulthood, both proteins were also found in the interior. In the adult, clusters of NCX on the surface of the cell retained the approximately 0.7-microm periodicity whereas clusters of RyR adopted a longer longitudinal periodicity of approximately 2.0 microm. This suggests that neonatal myocytes also have a peri-M-line RyR distribution that is absent in adult myocytes. NCX and RyR colocalized voxel density was maximal in neonates and declined significantly with ontogeny. We conclude in newborns, Ca(2+) influx via NCX could potentially activate the dense network of peripheral Ca(2+) stores via peripheral couplings, evoking Ca(2+)-induced Ca(2+) release.</abstract><cop>United States</cop><pub>Biophysical Society</pub><pmid>17557789</pmid><doi>10.1529/biophysj.107.104943</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2007-10, Vol.93 (7), p.2504-2518
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1965441
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Biophysics - methods
Calcium - metabolism
Cluster Analysis
Gene Expression Regulation, Developmental
Heart Ventricles - metabolism
Heart Ventricles - pathology
Image Processing, Computer-Assisted
Immunohistochemistry
Models, Statistical
Muscle Cells - metabolism
Protein Conformation
Rabbits
Ryanodine Receptor Calcium Release Channel - chemistry
Sarcoplasmic Reticulum - metabolism
Sodium-Calcium Exchanger - chemistry
Spectroscopy, Imaging, Other Techniques
title Three-dimensional distribution of cardiac Na+-Ca2+ exchanger and ryanodine receptor during development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20distribution%20of%20cardiac%20Na+-Ca2+%20exchanger%20and%20ryanodine%20receptor%20during%20development&rft.jtitle=Biophysical%20journal&rft.au=Dan,%20Pauline&rft.date=2007-10-01&rft.volume=93&rft.issue=7&rft.spage=2504&rft.epage=2518&rft.pages=2504-2518&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.107.104943&rft_dat=%3Cproquest_pubme%3E68242550%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68242550&rft_id=info:pmid/17557789&rfr_iscdi=true