Checkpoint activation regulates mutagenic translesion synthesis

Cells have evolved checkpoint responses to arrest or delay the cell cycle, activate DNA repair networks, or induce apoptosis after genomic perturbation. Cells have also evolved the translesion synthesis processes to tolerate genomic lesions by either error-free or error-prone repair. Here, we show t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes & development 2003-01, Vol.17 (1), p.64-76
Hauptverfasser: Kai, Mihoko, Wang, Teresa S-F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue 1
container_start_page 64
container_title Genes & development
container_volume 17
creator Kai, Mihoko
Wang, Teresa S-F
description Cells have evolved checkpoint responses to arrest or delay the cell cycle, activate DNA repair networks, or induce apoptosis after genomic perturbation. Cells have also evolved the translesion synthesis processes to tolerate genomic lesions by either error-free or error-prone repair. Here, we show that after a replication perturbation, cells exhibit a mutator phenotype, which can be significantly affected by mutations in the checkpoint elements Cds1 and Rad17 or translesion synthesis polymerases DinB and Polzeta. Cells respond to genomic perturbation by up-regulation of DinB in a checkpoint activation-dependent manner. Moreover, association of DinB with chromatin is dependent on functional Rad17, and DinB physically interacts with the checkpoint-clamp components Hus1 and Rad1. Thus, translesion synthesis is a part of the checkpoint response.
doi_str_mv 10.1101/gad.1043203
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_195967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18658552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-32bcfa1209b6658dadd223fc2948c215f2e4d0967a088491965224be013f5c823</originalsourceid><addsrcrecordid>eNqFkUtLw0AURgdRbK2u3EtWbiT1zjOZhYgUX1Bwo-thMpmk0TxqZlLov3dKg4-Vq3vhnu9y4EPoHMMcY8DXpc7nGBglQA_QFHMmY86S5BBNIZUQSyrkBJ049w4AAoQ4RhNMOGYYYIpuFytrPtZd1fpIG19ttK-6NuptOdTaWxc1g9elbSsT-V63rrZud3fb1q_C6k7RUaFrZ8_GOUNvD_evi6d4-fL4vLhbxoYl1MeUZKbQmIDMhOBprvOcEFoYIllqCOYFsSwHKRINacokloITwjILmBbcpITO0M3-73rIGpsb2wadWq37qtH9VnW6Un8vbbVSZbdRWPLwNuQvx3zffQ7WedVUzti61q3tBqeSYBJI8i-I0-DP-Q682oOm75zrbfEtg0HtilGhGDUWE-iL3_4_7NgE_QKUS4o4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18658552</pqid></control><display><type>article</type><title>Checkpoint activation regulates mutagenic translesion synthesis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Kai, Mihoko ; Wang, Teresa S-F</creator><creatorcontrib>Kai, Mihoko ; Wang, Teresa S-F</creatorcontrib><description>Cells have evolved checkpoint responses to arrest or delay the cell cycle, activate DNA repair networks, or induce apoptosis after genomic perturbation. Cells have also evolved the translesion synthesis processes to tolerate genomic lesions by either error-free or error-prone repair. Here, we show that after a replication perturbation, cells exhibit a mutator phenotype, which can be significantly affected by mutations in the checkpoint elements Cds1 and Rad17 or translesion synthesis polymerases DinB and Polzeta. Cells respond to genomic perturbation by up-regulation of DinB in a checkpoint activation-dependent manner. Moreover, association of DinB with chromatin is dependent on functional Rad17, and DinB physically interacts with the checkpoint-clamp components Hus1 and Rad1. Thus, translesion synthesis is a part of the checkpoint response.</description><identifier>ISSN: 0890-9369</identifier><identifier>EISSN: 1549-5477</identifier><identifier>DOI: 10.1101/gad.1043203</identifier><identifier>PMID: 12514100</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Bacterial Proteins - genetics ; Bacterial Proteins - physiology ; Cell Cycle - genetics ; Cell Cycle - physiology ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - physiology ; Checkpoint Kinase 2 ; Chromatin - metabolism ; DNA Polymerase I - genetics ; DNA Polymerase I - physiology ; DNA Repair - physiology ; DNA Repair Enzymes ; DNA Replication ; DNA-Binding Proteins ; DNA-Directed DNA Polymerase - genetics ; DNA-Directed DNA Polymerase - physiology ; Endonucleases - genetics ; Endonucleases - physiology ; Escherichia coli Proteins ; Genes, cdc ; Mutagenesis ; Nuclear Proteins ; Protein Kinases - genetics ; Protein Kinases - physiology ; Protein Serine-Threonine Kinases ; Research Paper ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - physiology ; Schizosaccharomyces pombe Proteins</subject><ispartof>Genes &amp; development, 2003-01, Vol.17 (1), p.64-76</ispartof><rights>Copyright © 2003, Cold Spring Harbor Laboratory Press 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-32bcfa1209b6658dadd223fc2948c215f2e4d0967a088491965224be013f5c823</citedby><cites>FETCH-LOGICAL-c473t-32bcfa1209b6658dadd223fc2948c215f2e4d0967a088491965224be013f5c823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC195967/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC195967/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12514100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kai, Mihoko</creatorcontrib><creatorcontrib>Wang, Teresa S-F</creatorcontrib><title>Checkpoint activation regulates mutagenic translesion synthesis</title><title>Genes &amp; development</title><addtitle>Genes Dev</addtitle><description>Cells have evolved checkpoint responses to arrest or delay the cell cycle, activate DNA repair networks, or induce apoptosis after genomic perturbation. Cells have also evolved the translesion synthesis processes to tolerate genomic lesions by either error-free or error-prone repair. Here, we show that after a replication perturbation, cells exhibit a mutator phenotype, which can be significantly affected by mutations in the checkpoint elements Cds1 and Rad17 or translesion synthesis polymerases DinB and Polzeta. Cells respond to genomic perturbation by up-regulation of DinB in a checkpoint activation-dependent manner. Moreover, association of DinB with chromatin is dependent on functional Rad17, and DinB physically interacts with the checkpoint-clamp components Hus1 and Rad1. Thus, translesion synthesis is a part of the checkpoint response.</description><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - physiology</subject><subject>Cell Cycle - genetics</subject><subject>Cell Cycle - physiology</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - physiology</subject><subject>Checkpoint Kinase 2</subject><subject>Chromatin - metabolism</subject><subject>DNA Polymerase I - genetics</subject><subject>DNA Polymerase I - physiology</subject><subject>DNA Repair - physiology</subject><subject>DNA Repair Enzymes</subject><subject>DNA Replication</subject><subject>DNA-Binding Proteins</subject><subject>DNA-Directed DNA Polymerase - genetics</subject><subject>DNA-Directed DNA Polymerase - physiology</subject><subject>Endonucleases - genetics</subject><subject>Endonucleases - physiology</subject><subject>Escherichia coli Proteins</subject><subject>Genes, cdc</subject><subject>Mutagenesis</subject><subject>Nuclear Proteins</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - physiology</subject><subject>Protein Serine-Threonine Kinases</subject><subject>Research Paper</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><subject>Schizosaccharomyces pombe Proteins</subject><issn>0890-9369</issn><issn>1549-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLw0AURgdRbK2u3EtWbiT1zjOZhYgUX1Bwo-thMpmk0TxqZlLov3dKg4-Vq3vhnu9y4EPoHMMcY8DXpc7nGBglQA_QFHMmY86S5BBNIZUQSyrkBJ049w4AAoQ4RhNMOGYYYIpuFytrPtZd1fpIG19ttK-6NuptOdTaWxc1g9elbSsT-V63rrZud3fb1q_C6k7RUaFrZ8_GOUNvD_evi6d4-fL4vLhbxoYl1MeUZKbQmIDMhOBprvOcEFoYIllqCOYFsSwHKRINacokloITwjILmBbcpITO0M3-73rIGpsb2wadWq37qtH9VnW6Un8vbbVSZbdRWPLwNuQvx3zffQ7WedVUzti61q3tBqeSYBJI8i-I0-DP-Q682oOm75zrbfEtg0HtilGhGDUWE-iL3_4_7NgE_QKUS4o4</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Kai, Mihoko</creator><creator>Wang, Teresa S-F</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030101</creationdate><title>Checkpoint activation regulates mutagenic translesion synthesis</title><author>Kai, Mihoko ; Wang, Teresa S-F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-32bcfa1209b6658dadd223fc2948c215f2e4d0967a088491965224be013f5c823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - physiology</topic><topic>Cell Cycle - genetics</topic><topic>Cell Cycle - physiology</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - physiology</topic><topic>Checkpoint Kinase 2</topic><topic>Chromatin - metabolism</topic><topic>DNA Polymerase I - genetics</topic><topic>DNA Polymerase I - physiology</topic><topic>DNA Repair - physiology</topic><topic>DNA Repair Enzymes</topic><topic>DNA Replication</topic><topic>DNA-Binding Proteins</topic><topic>DNA-Directed DNA Polymerase - genetics</topic><topic>DNA-Directed DNA Polymerase - physiology</topic><topic>Endonucleases - genetics</topic><topic>Endonucleases - physiology</topic><topic>Escherichia coli Proteins</topic><topic>Genes, cdc</topic><topic>Mutagenesis</topic><topic>Nuclear Proteins</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - physiology</topic><topic>Protein Serine-Threonine Kinases</topic><topic>Research Paper</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><topic>Schizosaccharomyces pombe Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kai, Mihoko</creatorcontrib><creatorcontrib>Wang, Teresa S-F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes &amp; development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kai, Mihoko</au><au>Wang, Teresa S-F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Checkpoint activation regulates mutagenic translesion synthesis</atitle><jtitle>Genes &amp; development</jtitle><addtitle>Genes Dev</addtitle><date>2003-01-01</date><risdate>2003</risdate><volume>17</volume><issue>1</issue><spage>64</spage><epage>76</epage><pages>64-76</pages><issn>0890-9369</issn><eissn>1549-5477</eissn><abstract>Cells have evolved checkpoint responses to arrest or delay the cell cycle, activate DNA repair networks, or induce apoptosis after genomic perturbation. Cells have also evolved the translesion synthesis processes to tolerate genomic lesions by either error-free or error-prone repair. Here, we show that after a replication perturbation, cells exhibit a mutator phenotype, which can be significantly affected by mutations in the checkpoint elements Cds1 and Rad17 or translesion synthesis polymerases DinB and Polzeta. Cells respond to genomic perturbation by up-regulation of DinB in a checkpoint activation-dependent manner. Moreover, association of DinB with chromatin is dependent on functional Rad17, and DinB physically interacts with the checkpoint-clamp components Hus1 and Rad1. Thus, translesion synthesis is a part of the checkpoint response.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>12514100</pmid><doi>10.1101/gad.1043203</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0890-9369
ispartof Genes & development, 2003-01, Vol.17 (1), p.64-76
issn 0890-9369
1549-5477
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_195967
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Bacterial Proteins - genetics
Bacterial Proteins - physiology
Cell Cycle - genetics
Cell Cycle - physiology
Cell Cycle Proteins - genetics
Cell Cycle Proteins - physiology
Checkpoint Kinase 2
Chromatin - metabolism
DNA Polymerase I - genetics
DNA Polymerase I - physiology
DNA Repair - physiology
DNA Repair Enzymes
DNA Replication
DNA-Binding Proteins
DNA-Directed DNA Polymerase - genetics
DNA-Directed DNA Polymerase - physiology
Endonucleases - genetics
Endonucleases - physiology
Escherichia coli Proteins
Genes, cdc
Mutagenesis
Nuclear Proteins
Protein Kinases - genetics
Protein Kinases - physiology
Protein Serine-Threonine Kinases
Research Paper
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - physiology
Schizosaccharomyces pombe Proteins
title Checkpoint activation regulates mutagenic translesion synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Checkpoint%20activation%20regulates%20mutagenic%20translesion%20synthesis&rft.jtitle=Genes%20&%20development&rft.au=Kai,%20Mihoko&rft.date=2003-01-01&rft.volume=17&rft.issue=1&rft.spage=64&rft.epage=76&rft.pages=64-76&rft.issn=0890-9369&rft.eissn=1549-5477&rft_id=info:doi/10.1101/gad.1043203&rft_dat=%3Cproquest_pubme%3E18658552%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18658552&rft_id=info:pmid/12514100&rfr_iscdi=true