Checkpoint activation regulates mutagenic translesion synthesis
Cells have evolved checkpoint responses to arrest or delay the cell cycle, activate DNA repair networks, or induce apoptosis after genomic perturbation. Cells have also evolved the translesion synthesis processes to tolerate genomic lesions by either error-free or error-prone repair. Here, we show t...
Gespeichert in:
Veröffentlicht in: | Genes & development 2003-01, Vol.17 (1), p.64-76 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | 1 |
container_start_page | 64 |
container_title | Genes & development |
container_volume | 17 |
creator | Kai, Mihoko Wang, Teresa S-F |
description | Cells have evolved checkpoint responses to arrest or delay the cell cycle, activate DNA repair networks, or induce apoptosis after genomic perturbation. Cells have also evolved the translesion synthesis processes to tolerate genomic lesions by either error-free or error-prone repair. Here, we show that after a replication perturbation, cells exhibit a mutator phenotype, which can be significantly affected by mutations in the checkpoint elements Cds1 and Rad17 or translesion synthesis polymerases DinB and Polzeta. Cells respond to genomic perturbation by up-regulation of DinB in a checkpoint activation-dependent manner. Moreover, association of DinB with chromatin is dependent on functional Rad17, and DinB physically interacts with the checkpoint-clamp components Hus1 and Rad1. Thus, translesion synthesis is a part of the checkpoint response. |
doi_str_mv | 10.1101/gad.1043203 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_195967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18658552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-32bcfa1209b6658dadd223fc2948c215f2e4d0967a088491965224be013f5c823</originalsourceid><addsrcrecordid>eNqFkUtLw0AURgdRbK2u3EtWbiT1zjOZhYgUX1Bwo-thMpmk0TxqZlLov3dKg4-Vq3vhnu9y4EPoHMMcY8DXpc7nGBglQA_QFHMmY86S5BBNIZUQSyrkBJ049w4AAoQ4RhNMOGYYYIpuFytrPtZd1fpIG19ttK-6NuptOdTaWxc1g9elbSsT-V63rrZud3fb1q_C6k7RUaFrZ8_GOUNvD_evi6d4-fL4vLhbxoYl1MeUZKbQmIDMhOBprvOcEFoYIllqCOYFsSwHKRINacokloITwjILmBbcpITO0M3-73rIGpsb2wadWq37qtH9VnW6Un8vbbVSZbdRWPLwNuQvx3zffQ7WedVUzti61q3tBqeSYBJI8i-I0-DP-Q682oOm75zrbfEtg0HtilGhGDUWE-iL3_4_7NgE_QKUS4o4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18658552</pqid></control><display><type>article</type><title>Checkpoint activation regulates mutagenic translesion synthesis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Kai, Mihoko ; Wang, Teresa S-F</creator><creatorcontrib>Kai, Mihoko ; Wang, Teresa S-F</creatorcontrib><description>Cells have evolved checkpoint responses to arrest or delay the cell cycle, activate DNA repair networks, or induce apoptosis after genomic perturbation. Cells have also evolved the translesion synthesis processes to tolerate genomic lesions by either error-free or error-prone repair. Here, we show that after a replication perturbation, cells exhibit a mutator phenotype, which can be significantly affected by mutations in the checkpoint elements Cds1 and Rad17 or translesion synthesis polymerases DinB and Polzeta. Cells respond to genomic perturbation by up-regulation of DinB in a checkpoint activation-dependent manner. Moreover, association of DinB with chromatin is dependent on functional Rad17, and DinB physically interacts with the checkpoint-clamp components Hus1 and Rad1. Thus, translesion synthesis is a part of the checkpoint response.</description><identifier>ISSN: 0890-9369</identifier><identifier>EISSN: 1549-5477</identifier><identifier>DOI: 10.1101/gad.1043203</identifier><identifier>PMID: 12514100</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Bacterial Proteins - genetics ; Bacterial Proteins - physiology ; Cell Cycle - genetics ; Cell Cycle - physiology ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - physiology ; Checkpoint Kinase 2 ; Chromatin - metabolism ; DNA Polymerase I - genetics ; DNA Polymerase I - physiology ; DNA Repair - physiology ; DNA Repair Enzymes ; DNA Replication ; DNA-Binding Proteins ; DNA-Directed DNA Polymerase - genetics ; DNA-Directed DNA Polymerase - physiology ; Endonucleases - genetics ; Endonucleases - physiology ; Escherichia coli Proteins ; Genes, cdc ; Mutagenesis ; Nuclear Proteins ; Protein Kinases - genetics ; Protein Kinases - physiology ; Protein Serine-Threonine Kinases ; Research Paper ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - physiology ; Schizosaccharomyces pombe Proteins</subject><ispartof>Genes & development, 2003-01, Vol.17 (1), p.64-76</ispartof><rights>Copyright © 2003, Cold Spring Harbor Laboratory Press 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-32bcfa1209b6658dadd223fc2948c215f2e4d0967a088491965224be013f5c823</citedby><cites>FETCH-LOGICAL-c473t-32bcfa1209b6658dadd223fc2948c215f2e4d0967a088491965224be013f5c823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC195967/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC195967/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12514100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kai, Mihoko</creatorcontrib><creatorcontrib>Wang, Teresa S-F</creatorcontrib><title>Checkpoint activation regulates mutagenic translesion synthesis</title><title>Genes & development</title><addtitle>Genes Dev</addtitle><description>Cells have evolved checkpoint responses to arrest or delay the cell cycle, activate DNA repair networks, or induce apoptosis after genomic perturbation. Cells have also evolved the translesion synthesis processes to tolerate genomic lesions by either error-free or error-prone repair. Here, we show that after a replication perturbation, cells exhibit a mutator phenotype, which can be significantly affected by mutations in the checkpoint elements Cds1 and Rad17 or translesion synthesis polymerases DinB and Polzeta. Cells respond to genomic perturbation by up-regulation of DinB in a checkpoint activation-dependent manner. Moreover, association of DinB with chromatin is dependent on functional Rad17, and DinB physically interacts with the checkpoint-clamp components Hus1 and Rad1. Thus, translesion synthesis is a part of the checkpoint response.</description><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - physiology</subject><subject>Cell Cycle - genetics</subject><subject>Cell Cycle - physiology</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - physiology</subject><subject>Checkpoint Kinase 2</subject><subject>Chromatin - metabolism</subject><subject>DNA Polymerase I - genetics</subject><subject>DNA Polymerase I - physiology</subject><subject>DNA Repair - physiology</subject><subject>DNA Repair Enzymes</subject><subject>DNA Replication</subject><subject>DNA-Binding Proteins</subject><subject>DNA-Directed DNA Polymerase - genetics</subject><subject>DNA-Directed DNA Polymerase - physiology</subject><subject>Endonucleases - genetics</subject><subject>Endonucleases - physiology</subject><subject>Escherichia coli Proteins</subject><subject>Genes, cdc</subject><subject>Mutagenesis</subject><subject>Nuclear Proteins</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - physiology</subject><subject>Protein Serine-Threonine Kinases</subject><subject>Research Paper</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><subject>Schizosaccharomyces pombe Proteins</subject><issn>0890-9369</issn><issn>1549-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLw0AURgdRbK2u3EtWbiT1zjOZhYgUX1Bwo-thMpmk0TxqZlLov3dKg4-Vq3vhnu9y4EPoHMMcY8DXpc7nGBglQA_QFHMmY86S5BBNIZUQSyrkBJ049w4AAoQ4RhNMOGYYYIpuFytrPtZd1fpIG19ttK-6NuptOdTaWxc1g9elbSsT-V63rrZud3fb1q_C6k7RUaFrZ8_GOUNvD_evi6d4-fL4vLhbxoYl1MeUZKbQmIDMhOBprvOcEFoYIllqCOYFsSwHKRINacokloITwjILmBbcpITO0M3-73rIGpsb2wadWq37qtH9VnW6Un8vbbVSZbdRWPLwNuQvx3zffQ7WedVUzti61q3tBqeSYBJI8i-I0-DP-Q682oOm75zrbfEtg0HtilGhGDUWE-iL3_4_7NgE_QKUS4o4</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Kai, Mihoko</creator><creator>Wang, Teresa S-F</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030101</creationdate><title>Checkpoint activation regulates mutagenic translesion synthesis</title><author>Kai, Mihoko ; Wang, Teresa S-F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-32bcfa1209b6658dadd223fc2948c215f2e4d0967a088491965224be013f5c823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - physiology</topic><topic>Cell Cycle - genetics</topic><topic>Cell Cycle - physiology</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - physiology</topic><topic>Checkpoint Kinase 2</topic><topic>Chromatin - metabolism</topic><topic>DNA Polymerase I - genetics</topic><topic>DNA Polymerase I - physiology</topic><topic>DNA Repair - physiology</topic><topic>DNA Repair Enzymes</topic><topic>DNA Replication</topic><topic>DNA-Binding Proteins</topic><topic>DNA-Directed DNA Polymerase - genetics</topic><topic>DNA-Directed DNA Polymerase - physiology</topic><topic>Endonucleases - genetics</topic><topic>Endonucleases - physiology</topic><topic>Escherichia coli Proteins</topic><topic>Genes, cdc</topic><topic>Mutagenesis</topic><topic>Nuclear Proteins</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - physiology</topic><topic>Protein Serine-Threonine Kinases</topic><topic>Research Paper</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><topic>Schizosaccharomyces pombe Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kai, Mihoko</creatorcontrib><creatorcontrib>Wang, Teresa S-F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes & development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kai, Mihoko</au><au>Wang, Teresa S-F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Checkpoint activation regulates mutagenic translesion synthesis</atitle><jtitle>Genes & development</jtitle><addtitle>Genes Dev</addtitle><date>2003-01-01</date><risdate>2003</risdate><volume>17</volume><issue>1</issue><spage>64</spage><epage>76</epage><pages>64-76</pages><issn>0890-9369</issn><eissn>1549-5477</eissn><abstract>Cells have evolved checkpoint responses to arrest or delay the cell cycle, activate DNA repair networks, or induce apoptosis after genomic perturbation. Cells have also evolved the translesion synthesis processes to tolerate genomic lesions by either error-free or error-prone repair. Here, we show that after a replication perturbation, cells exhibit a mutator phenotype, which can be significantly affected by mutations in the checkpoint elements Cds1 and Rad17 or translesion synthesis polymerases DinB and Polzeta. Cells respond to genomic perturbation by up-regulation of DinB in a checkpoint activation-dependent manner. Moreover, association of DinB with chromatin is dependent on functional Rad17, and DinB physically interacts with the checkpoint-clamp components Hus1 and Rad1. Thus, translesion synthesis is a part of the checkpoint response.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>12514100</pmid><doi>10.1101/gad.1043203</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-9369 |
ispartof | Genes & development, 2003-01, Vol.17 (1), p.64-76 |
issn | 0890-9369 1549-5477 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_195967 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Bacterial Proteins - genetics Bacterial Proteins - physiology Cell Cycle - genetics Cell Cycle - physiology Cell Cycle Proteins - genetics Cell Cycle Proteins - physiology Checkpoint Kinase 2 Chromatin - metabolism DNA Polymerase I - genetics DNA Polymerase I - physiology DNA Repair - physiology DNA Repair Enzymes DNA Replication DNA-Binding Proteins DNA-Directed DNA Polymerase - genetics DNA-Directed DNA Polymerase - physiology Endonucleases - genetics Endonucleases - physiology Escherichia coli Proteins Genes, cdc Mutagenesis Nuclear Proteins Protein Kinases - genetics Protein Kinases - physiology Protein Serine-Threonine Kinases Research Paper Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - physiology Schizosaccharomyces pombe Proteins |
title | Checkpoint activation regulates mutagenic translesion synthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Checkpoint%20activation%20regulates%20mutagenic%20translesion%20synthesis&rft.jtitle=Genes%20&%20development&rft.au=Kai,%20Mihoko&rft.date=2003-01-01&rft.volume=17&rft.issue=1&rft.spage=64&rft.epage=76&rft.pages=64-76&rft.issn=0890-9369&rft.eissn=1549-5477&rft_id=info:doi/10.1101/gad.1043203&rft_dat=%3Cproquest_pubme%3E18658552%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18658552&rft_id=info:pmid/12514100&rfr_iscdi=true |