Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent
Many bacteria possess 2 or more genes for the chaperonin GroEL and the cochaperonin GroES. In particular, rhizobial species often have multiple groEL and groES genes, with a high degree of amino-acid similarity, in their genomes. The Rhizobium leguminosarum strain A34 has 3 complete groE operons, wh...
Gespeichert in:
Veröffentlicht in: | Cell stress & chaperones 2007-06, Vol.12 (2), p.123-131 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 131 |
---|---|
container_issue | 2 |
container_start_page | 123 |
container_title | Cell stress & chaperones |
container_volume | 12 |
creator | Gould, Phillip S. Burgar, Helen R. Lund, Peter A. |
description | Many bacteria possess 2 or more genes for the chaperonin GroEL and the cochaperonin GroES. In particular, rhizobial species often have multiple groEL and groES genes, with a high degree of amino-acid similarity, in their genomes. The Rhizobium leguminosarum strain A34 has 3 complete groE operons, which we have named cpn.1, cpn.2 and cpn.3. Previously we have shown the cpn.1 operon to be essential for growth, but the two other cpn operons to be dispensable. Here, we have investigated the extent to which loss of the essential GroEL homologue Cpn60.1 can be compensated for by expression of the other two GroEL homologues (Cnp60.2 and Cpn60.3). Cpn60.2 could not be overexpressed to high levels in R. leguminosarum, and was unable to replace Cpn60.1. A strain that overexpressed Cpn60.3 grew in the absence of Cpn60.1, but the complemented strain displayed a temperature-sensitive phenotype. Cpn60.1 and Cpn60.3, when coexpressed in Escherichia coli, preferentially selfassembled rather than forming mixed heteroligomers. We conclude that, despite their high amino acid similarity, the GroEL homologues of R. leguminosarum are not functionally equivalent in vivo. |
doi_str_mv | 10.1379/CSC-227R.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1949324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4539758</jstor_id><sourcerecordid>4539758</sourcerecordid><originalsourceid>FETCH-LOGICAL-b488t-38f737906e24071a79d9daf435872ca33fd8f315d3fb3145c4a6cd60149ea0993</originalsourceid><addsrcrecordid>eNqFkc1rFTEUxYMotn26cS0yuCgiTM3NdzaCPNQKBbHqOmRmMq95ZJLXZKZQ_3pT3qN-LHSVXM6Pe8-9B6FngM-ASv1m_XXdEiIvz-ABOgYmRAtEqIf1TzlvFTB-hE5K2WKMpZTwGB2BFEqBhmP05TxNKaRNWkrT76LAzcZFVxofm8sr_yN1fpma4DbL5GMqNtfKZtfENDfjEvvZp2hDuG3c9eJvbHBxfoIejTYU9_TwrtD3D--_rc_bi88fP63fXbQdU2puqRplNY-FIwxLsFIPerAjo1xJ0ltKx0GNFPhAx47WFXpmRT8IDEw7i7WmK_R233e3dJMb-jo622B22U8235pkvflTif7KbNKNAc00Jaw2OD00yOl6cWU2ky-9C8FGV89hRL0c1Zz8FwQtQHEQFXz5F7hNS64HKoZUy0xggiv0eg_1OZWS3XhvGbC5y9PUPM1dnrVaoRe_L_kLPQRYged7YFvmlO91xqmWXFX51V7ufErR_WvUT7DsshM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>209946020</pqid></control><display><type>article</type><title>Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent</title><source>MEDLINE</source><source>BioOne Complete</source><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gould, Phillip S. ; Burgar, Helen R. ; Lund, Peter A.</creator><creatorcontrib>Gould, Phillip S. ; Burgar, Helen R. ; Lund, Peter A.</creatorcontrib><description>Many bacteria possess 2 or more genes for the chaperonin GroEL and the cochaperonin GroES. In particular, rhizobial species often have multiple groEL and groES genes, with a high degree of amino-acid similarity, in their genomes. The Rhizobium leguminosarum strain A34 has 3 complete groE operons, which we have named cpn.1, cpn.2 and cpn.3. Previously we have shown the cpn.1 operon to be essential for growth, but the two other cpn operons to be dispensable. Here, we have investigated the extent to which loss of the essential GroEL homologue Cpn60.1 can be compensated for by expression of the other two GroEL homologues (Cnp60.2 and Cpn60.3). Cpn60.2 could not be overexpressed to high levels in R. leguminosarum, and was unable to replace Cpn60.1. A strain that overexpressed Cpn60.3 grew in the absence of Cpn60.1, but the complemented strain displayed a temperature-sensitive phenotype. Cpn60.1 and Cpn60.3, when coexpressed in Escherichia coli, preferentially selfassembled rather than forming mixed heteroligomers. We conclude that, despite their high amino acid similarity, the GroEL homologues of R. leguminosarum are not functionally equivalent in vivo.</description><identifier>ISSN: 1355-8145</identifier><identifier>EISSN: 1466-1268</identifier><identifier>DOI: 10.1379/CSC-227R.1</identifier><identifier>PMID: 17688191</identifier><language>eng</language><publisher>Netherlands: Churchill Livingstone</publisher><subject>Chaperonin 60 - chemistry ; Chaperonin 60 - genetics ; Chaperonin 60 - metabolism ; Chaperonins ; Escherichia coli ; Genes ; Genetic Complementation Test ; Genetic mutation ; Genomes ; Operons ; Original ; Original s ; Phylogeny ; Plasmids ; Polymerase chain reaction ; Protein Structure, Quaternary ; Proteins ; Rhizobium leguminosarum ; Rhizobium leguminosarum - genetics ; Sequence Homology, Amino Acid</subject><ispartof>Cell stress & chaperones, 2007-06, Vol.12 (2), p.123-131</ispartof><rights>Cell Stress Society International</rights><rights>Copyright 2007 Cell Stress Society International</rights><rights>Copyright Alliance Communications Group, A Division of Allen Press, Inc. Summer 2007</rights><rights>Copyright © 2007, Cell Stress Society International 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b488t-38f737906e24071a79d9daf435872ca33fd8f315d3fb3145c4a6cd60149ea0993</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://bioone.org/doi/pdf/10.1379/CSC-227R.1$$EPDF$$P50$$Gbioone$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4539758$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,26959,27905,27906,52344,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17688191$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gould, Phillip S.</creatorcontrib><creatorcontrib>Burgar, Helen R.</creatorcontrib><creatorcontrib>Lund, Peter A.</creatorcontrib><title>Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent</title><title>Cell stress & chaperones</title><addtitle>Cell Stress Chaperones</addtitle><description>Many bacteria possess 2 or more genes for the chaperonin GroEL and the cochaperonin GroES. In particular, rhizobial species often have multiple groEL and groES genes, with a high degree of amino-acid similarity, in their genomes. The Rhizobium leguminosarum strain A34 has 3 complete groE operons, which we have named cpn.1, cpn.2 and cpn.3. Previously we have shown the cpn.1 operon to be essential for growth, but the two other cpn operons to be dispensable. Here, we have investigated the extent to which loss of the essential GroEL homologue Cpn60.1 can be compensated for by expression of the other two GroEL homologues (Cnp60.2 and Cpn60.3). Cpn60.2 could not be overexpressed to high levels in R. leguminosarum, and was unable to replace Cpn60.1. A strain that overexpressed Cpn60.3 grew in the absence of Cpn60.1, but the complemented strain displayed a temperature-sensitive phenotype. Cpn60.1 and Cpn60.3, when coexpressed in Escherichia coli, preferentially selfassembled rather than forming mixed heteroligomers. We conclude that, despite their high amino acid similarity, the GroEL homologues of R. leguminosarum are not functionally equivalent in vivo.</description><subject>Chaperonin 60 - chemistry</subject><subject>Chaperonin 60 - genetics</subject><subject>Chaperonin 60 - metabolism</subject><subject>Chaperonins</subject><subject>Escherichia coli</subject><subject>Genes</subject><subject>Genetic Complementation Test</subject><subject>Genetic mutation</subject><subject>Genomes</subject><subject>Operons</subject><subject>Original</subject><subject>Original s</subject><subject>Phylogeny</subject><subject>Plasmids</subject><subject>Polymerase chain reaction</subject><subject>Protein Structure, Quaternary</subject><subject>Proteins</subject><subject>Rhizobium leguminosarum</subject><subject>Rhizobium leguminosarum - genetics</subject><subject>Sequence Homology, Amino Acid</subject><issn>1355-8145</issn><issn>1466-1268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc1rFTEUxYMotn26cS0yuCgiTM3NdzaCPNQKBbHqOmRmMq95ZJLXZKZQ_3pT3qN-LHSVXM6Pe8-9B6FngM-ASv1m_XXdEiIvz-ABOgYmRAtEqIf1TzlvFTB-hE5K2WKMpZTwGB2BFEqBhmP05TxNKaRNWkrT76LAzcZFVxofm8sr_yN1fpma4DbL5GMqNtfKZtfENDfjEvvZp2hDuG3c9eJvbHBxfoIejTYU9_TwrtD3D--_rc_bi88fP63fXbQdU2puqRplNY-FIwxLsFIPerAjo1xJ0ltKx0GNFPhAx47WFXpmRT8IDEw7i7WmK_R233e3dJMb-jo622B22U8235pkvflTif7KbNKNAc00Jaw2OD00yOl6cWU2ky-9C8FGV89hRL0c1Zz8FwQtQHEQFXz5F7hNS64HKoZUy0xggiv0eg_1OZWS3XhvGbC5y9PUPM1dnrVaoRe_L_kLPQRYged7YFvmlO91xqmWXFX51V7ufErR_WvUT7DsshM</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Gould, Phillip S.</creator><creator>Burgar, Helen R.</creator><creator>Lund, Peter A.</creator><general>Churchill Livingstone</general><general>Springer Nature B.V</general><general>Cell Stress Society International</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070601</creationdate><title>Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent</title><author>Gould, Phillip S. ; Burgar, Helen R. ; Lund, Peter A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b488t-38f737906e24071a79d9daf435872ca33fd8f315d3fb3145c4a6cd60149ea0993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Chaperonin 60 - chemistry</topic><topic>Chaperonin 60 - genetics</topic><topic>Chaperonin 60 - metabolism</topic><topic>Chaperonins</topic><topic>Escherichia coli</topic><topic>Genes</topic><topic>Genetic Complementation Test</topic><topic>Genetic mutation</topic><topic>Genomes</topic><topic>Operons</topic><topic>Original</topic><topic>Original s</topic><topic>Phylogeny</topic><topic>Plasmids</topic><topic>Polymerase chain reaction</topic><topic>Protein Structure, Quaternary</topic><topic>Proteins</topic><topic>Rhizobium leguminosarum</topic><topic>Rhizobium leguminosarum - genetics</topic><topic>Sequence Homology, Amino Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gould, Phillip S.</creatorcontrib><creatorcontrib>Burgar, Helen R.</creatorcontrib><creatorcontrib>Lund, Peter A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell stress & chaperones</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gould, Phillip S.</au><au>Burgar, Helen R.</au><au>Lund, Peter A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent</atitle><jtitle>Cell stress & chaperones</jtitle><addtitle>Cell Stress Chaperones</addtitle><date>2007-06-01</date><risdate>2007</risdate><volume>12</volume><issue>2</issue><spage>123</spage><epage>131</epage><pages>123-131</pages><issn>1355-8145</issn><eissn>1466-1268</eissn><abstract>Many bacteria possess 2 or more genes for the chaperonin GroEL and the cochaperonin GroES. In particular, rhizobial species often have multiple groEL and groES genes, with a high degree of amino-acid similarity, in their genomes. The Rhizobium leguminosarum strain A34 has 3 complete groE operons, which we have named cpn.1, cpn.2 and cpn.3. Previously we have shown the cpn.1 operon to be essential for growth, but the two other cpn operons to be dispensable. Here, we have investigated the extent to which loss of the essential GroEL homologue Cpn60.1 can be compensated for by expression of the other two GroEL homologues (Cnp60.2 and Cpn60.3). Cpn60.2 could not be overexpressed to high levels in R. leguminosarum, and was unable to replace Cpn60.1. A strain that overexpressed Cpn60.3 grew in the absence of Cpn60.1, but the complemented strain displayed a temperature-sensitive phenotype. Cpn60.1 and Cpn60.3, when coexpressed in Escherichia coli, preferentially selfassembled rather than forming mixed heteroligomers. We conclude that, despite their high amino acid similarity, the GroEL homologues of R. leguminosarum are not functionally equivalent in vivo.</abstract><cop>Netherlands</cop><pub>Churchill Livingstone</pub><pmid>17688191</pmid><doi>10.1379/CSC-227R.1</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1355-8145 |
ispartof | Cell stress & chaperones, 2007-06, Vol.12 (2), p.123-131 |
issn | 1355-8145 1466-1268 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1949324 |
source | MEDLINE; BioOne Complete; Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Chaperonin 60 - chemistry Chaperonin 60 - genetics Chaperonin 60 - metabolism Chaperonins Escherichia coli Genes Genetic Complementation Test Genetic mutation Genomes Operons Original Original s Phylogeny Plasmids Polymerase chain reaction Protein Structure, Quaternary Proteins Rhizobium leguminosarum Rhizobium leguminosarum - genetics Sequence Homology, Amino Acid |
title | Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A00%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homologous%20cpn60%20genes%20in%20Rhizobium%20leguminosarum%20are%20not%20functionally%20equivalent&rft.jtitle=Cell%20stress%20&%20chaperones&rft.au=Gould,%20Phillip%20S.&rft.date=2007-06-01&rft.volume=12&rft.issue=2&rft.spage=123&rft.epage=131&rft.pages=123-131&rft.issn=1355-8145&rft.eissn=1466-1268&rft_id=info:doi/10.1379/CSC-227R.1&rft_dat=%3Cjstor_pubme%3E4539758%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=209946020&rft_id=info:pmid/17688191&rft_jstor_id=4539758&rfr_iscdi=true |