Energy Considerations Show that Low-Barrier Hydrogen Bonds do not Offer a Catalytic Advantage over Ordinary Hydrogen Bonds

Low-barrier hydrogen bonds have recently been proposed as a major factor in enzyme catalysis. Here we evaluate the feasibility of transition state (TS) stabilization by low-barrier hydrogen bonds in enzymes. Our analysis focuses on the facts that (i) a low-barrier hydrogen bond is less stable than a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1996-11, Vol.93 (24), p.13665-13670
Hauptverfasser: Warshel, Arieh, Papazyan, Arno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13670
container_issue 24
container_start_page 13665
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 93
creator Warshel, Arieh
Papazyan, Arno
description Low-barrier hydrogen bonds have recently been proposed as a major factor in enzyme catalysis. Here we evaluate the feasibility of transition state (TS) stabilization by low-barrier hydrogen bonds in enzymes. Our analysis focuses on the facts that (i) a low-barrier hydrogen bond is less stable than a regular hydrogen bond in water, (ii) TSs are more stable in the enzyme active sites than in water, and (iii) a nonpolar active site would destabilize the TS relative to its energy in water. Combining these points and other experimental and theoretical facts in a physically consistent framework shows that a low-barrier hydrogen bond cannot stabilize the TS more than an ordinary hydrogen bond. The reason for the large catalytic effect of active site hydrogen bonds is that their formation entails a lower reorganization energy than their solution counterparts, due to the preorganized enzyme environment.
doi_str_mv 10.1073/pnas.93.24.13665
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_19385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40957</jstor_id><sourcerecordid>40957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-5c98719686ea5fe05761ddcd53946f17697016eecea287978c4d3f3343b4a05a3</originalsourceid><addsrcrecordid>eNp9kk1vEzEURS0EKqGwR0gIiwViM8GfY1ti00alRYqUBbC23LEnmWhiB9uTkv76Ok0atV2wsqV7ztOzrgF4j9EYI0G_rb1JY0XHhI0xrWv-AowwUriqmUIvwQghIirJCHsN3qS0RAgpLtEJOJGKEaXwCNxeeBfnWzgJPnXWRZO7coO_FuEG5oXJcBpuqnMTY-civNraGObOw_PgbYI2QB8ynLVtyQycmGz6be4aeGY3xmczdzBsSjSLtvMmbp_5b8Gr1vTJvTucp-DPj4vfk6tqOrv8OTmbVg1TJFe8UVJgVcvaGd46xEWNrW0sp4rVLRa1EgjXzjXOECmUkA2ztKWU0WtmEDf0FHzfz10P1ytnG-dzNL1ex25VltLBdPpp4ruFnoeNxopKXvQvBz2Gv4NLWa-61Li-N96FIWkhueBEsgJ-fgYuwxB9eZomCFOMMREFQnuoiSGl6NrjHhjpXaV6V6lWVBOm7ystysfH-x-FQ4cl_3rId-ZD-miCboe-z-5fLuin_6OF-LAnlimHeERY-TiC3gG5KsAM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201311127</pqid></control><display><type>article</type><title>Energy Considerations Show that Low-Barrier Hydrogen Bonds do not Offer a Catalytic Advantage over Ordinary Hydrogen Bonds</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Warshel, Arieh ; Papazyan, Arno</creator><creatorcontrib>Warshel, Arieh ; Papazyan, Arno</creatorcontrib><description>Low-barrier hydrogen bonds have recently been proposed as a major factor in enzyme catalysis. Here we evaluate the feasibility of transition state (TS) stabilization by low-barrier hydrogen bonds in enzymes. Our analysis focuses on the facts that (i) a low-barrier hydrogen bond is less stable than a regular hydrogen bond in water, (ii) TSs are more stable in the enzyme active sites than in water, and (iii) a nonpolar active site would destabilize the TS relative to its energy in water. Combining these points and other experimental and theoretical facts in a physically consistent framework shows that a low-barrier hydrogen bond cannot stabilize the TS more than an ordinary hydrogen bond. The reason for the large catalytic effect of active site hydrogen bonds is that their formation entails a lower reorganization energy than their solution counterparts, due to the preorganized enzyme environment.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.93.24.13665</identifier><identifier>PMID: 8942991</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Active sites ; Binding Sites ; Biochemistry ; Biological Sciences ; Catalysis ; Electrostatics ; Enzymes ; Enzymes - chemistry ; Enzymes - metabolism ; Free energy ; Hydrogen ; Hydrogen Bonding ; Hydrogen bonds ; Kinetics ; Models, Chemical ; Models, Structural ; Protons ; Serine Endopeptidases - chemistry ; Serine Endopeptidases - metabolism ; Solvation ; Solvents ; Static Electricity ; Thermodynamics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1996-11, Vol.93 (24), p.13665-13670</ispartof><rights>Copyright 1996 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Nov 26, 1996</rights><rights>Copyright © 1996, The National Academy of Sciences of the USA 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-5c98719686ea5fe05761ddcd53946f17697016eecea287978c4d3f3343b4a05a3</citedby><cites>FETCH-LOGICAL-c492t-5c98719686ea5fe05761ddcd53946f17697016eecea287978c4d3f3343b4a05a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/93/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40957$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40957$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8942991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Warshel, Arieh</creatorcontrib><creatorcontrib>Papazyan, Arno</creatorcontrib><title>Energy Considerations Show that Low-Barrier Hydrogen Bonds do not Offer a Catalytic Advantage over Ordinary Hydrogen Bonds</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Low-barrier hydrogen bonds have recently been proposed as a major factor in enzyme catalysis. Here we evaluate the feasibility of transition state (TS) stabilization by low-barrier hydrogen bonds in enzymes. Our analysis focuses on the facts that (i) a low-barrier hydrogen bond is less stable than a regular hydrogen bond in water, (ii) TSs are more stable in the enzyme active sites than in water, and (iii) a nonpolar active site would destabilize the TS relative to its energy in water. Combining these points and other experimental and theoretical facts in a physically consistent framework shows that a low-barrier hydrogen bond cannot stabilize the TS more than an ordinary hydrogen bond. The reason for the large catalytic effect of active site hydrogen bonds is that their formation entails a lower reorganization energy than their solution counterparts, due to the preorganized enzyme environment.</description><subject>Active sites</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Catalysis</subject><subject>Electrostatics</subject><subject>Enzymes</subject><subject>Enzymes - chemistry</subject><subject>Enzymes - metabolism</subject><subject>Free energy</subject><subject>Hydrogen</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen bonds</subject><subject>Kinetics</subject><subject>Models, Chemical</subject><subject>Models, Structural</subject><subject>Protons</subject><subject>Serine Endopeptidases - chemistry</subject><subject>Serine Endopeptidases - metabolism</subject><subject>Solvation</subject><subject>Solvents</subject><subject>Static Electricity</subject><subject>Thermodynamics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kk1vEzEURS0EKqGwR0gIiwViM8GfY1ti00alRYqUBbC23LEnmWhiB9uTkv76Ok0atV2wsqV7ztOzrgF4j9EYI0G_rb1JY0XHhI0xrWv-AowwUriqmUIvwQghIirJCHsN3qS0RAgpLtEJOJGKEaXwCNxeeBfnWzgJPnXWRZO7coO_FuEG5oXJcBpuqnMTY-civNraGObOw_PgbYI2QB8ynLVtyQycmGz6be4aeGY3xmczdzBsSjSLtvMmbp_5b8Gr1vTJvTucp-DPj4vfk6tqOrv8OTmbVg1TJFe8UVJgVcvaGd46xEWNrW0sp4rVLRa1EgjXzjXOECmUkA2ztKWU0WtmEDf0FHzfz10P1ytnG-dzNL1ex25VltLBdPpp4ruFnoeNxopKXvQvBz2Gv4NLWa-61Li-N96FIWkhueBEsgJ-fgYuwxB9eZomCFOMMREFQnuoiSGl6NrjHhjpXaV6V6lWVBOm7ystysfH-x-FQ4cl_3rId-ZD-miCboe-z-5fLuin_6OF-LAnlimHeERY-TiC3gG5KsAM</recordid><startdate>19961126</startdate><enddate>19961126</enddate><creator>Warshel, Arieh</creator><creator>Papazyan, Arno</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences of the USA</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19961126</creationdate><title>Energy Considerations Show that Low-Barrier Hydrogen Bonds do not Offer a Catalytic Advantage over Ordinary Hydrogen Bonds</title><author>Warshel, Arieh ; Papazyan, Arno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-5c98719686ea5fe05761ddcd53946f17697016eecea287978c4d3f3343b4a05a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Active sites</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Catalysis</topic><topic>Electrostatics</topic><topic>Enzymes</topic><topic>Enzymes - chemistry</topic><topic>Enzymes - metabolism</topic><topic>Free energy</topic><topic>Hydrogen</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen bonds</topic><topic>Kinetics</topic><topic>Models, Chemical</topic><topic>Models, Structural</topic><topic>Protons</topic><topic>Serine Endopeptidases - chemistry</topic><topic>Serine Endopeptidases - metabolism</topic><topic>Solvation</topic><topic>Solvents</topic><topic>Static Electricity</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Warshel, Arieh</creatorcontrib><creatorcontrib>Papazyan, Arno</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Warshel, Arieh</au><au>Papazyan, Arno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Considerations Show that Low-Barrier Hydrogen Bonds do not Offer a Catalytic Advantage over Ordinary Hydrogen Bonds</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1996-11-26</date><risdate>1996</risdate><volume>93</volume><issue>24</issue><spage>13665</spage><epage>13670</epage><pages>13665-13670</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Low-barrier hydrogen bonds have recently been proposed as a major factor in enzyme catalysis. Here we evaluate the feasibility of transition state (TS) stabilization by low-barrier hydrogen bonds in enzymes. Our analysis focuses on the facts that (i) a low-barrier hydrogen bond is less stable than a regular hydrogen bond in water, (ii) TSs are more stable in the enzyme active sites than in water, and (iii) a nonpolar active site would destabilize the TS relative to its energy in water. Combining these points and other experimental and theoretical facts in a physically consistent framework shows that a low-barrier hydrogen bond cannot stabilize the TS more than an ordinary hydrogen bond. The reason for the large catalytic effect of active site hydrogen bonds is that their formation entails a lower reorganization energy than their solution counterparts, due to the preorganized enzyme environment.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8942991</pmid><doi>10.1073/pnas.93.24.13665</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1996-11, Vol.93 (24), p.13665-13670
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_19385
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Active sites
Binding Sites
Biochemistry
Biological Sciences
Catalysis
Electrostatics
Enzymes
Enzymes - chemistry
Enzymes - metabolism
Free energy
Hydrogen
Hydrogen Bonding
Hydrogen bonds
Kinetics
Models, Chemical
Models, Structural
Protons
Serine Endopeptidases - chemistry
Serine Endopeptidases - metabolism
Solvation
Solvents
Static Electricity
Thermodynamics
title Energy Considerations Show that Low-Barrier Hydrogen Bonds do not Offer a Catalytic Advantage over Ordinary Hydrogen Bonds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A55%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Considerations%20Show%20that%20Low-Barrier%20Hydrogen%20Bonds%20do%20not%20Offer%20a%20Catalytic%20Advantage%20over%20Ordinary%20Hydrogen%20Bonds&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Warshel,%20Arieh&rft.date=1996-11-26&rft.volume=93&rft.issue=24&rft.spage=13665&rft.epage=13670&rft.pages=13665-13670&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.93.24.13665&rft_dat=%3Cjstor_pubme%3E40957%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201311127&rft_id=info:pmid/8942991&rft_jstor_id=40957&rfr_iscdi=true