new connection of mRNP biogenesis and export with transcription-coupled repair

Although DNA repair is faster in the transcribed strand of active genes, little is known about the possible contribution of mRNP biogenesis and export in transcription-coupled repair (TCR). Interestingly, mutants of THO, a transcription complex involved in maintenance of genome integrity, mRNP bioge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2007-06, Vol.35 (12), p.3893-3906
Hauptverfasser: Gaillard, Hélène, Wellinger, Ralf Erik, Aguilera, Andrés
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3906
container_issue 12
container_start_page 3893
container_title Nucleic acids research
container_volume 35
creator Gaillard, Hélène
Wellinger, Ralf Erik
Aguilera, Andrés
description Although DNA repair is faster in the transcribed strand of active genes, little is known about the possible contribution of mRNP biogenesis and export in transcription-coupled repair (TCR). Interestingly, mutants of THO, a transcription complex involved in maintenance of genome integrity, mRNP biogenesis and export, were recently found to be deficient in nucleotide excision repair. In this study we show by molecular DNA repair analysis, that Sub2-Yra1 and Thp1-Sac3, two main mRNA export complexes, are required for efficient TCR in yeast. Careful analysis revealed that THO mutants are also specifically affected in TCR. Ribozyme-mediated mRNA self-cleavage between two hot spots for UV damage showed that efficient TCR does not depend on the nascent mRNA, neither in wild-type nor in mutant cells. Along with severe UV damage-dependent loss in processivity, RNAPII was found binding to chromatin upon UV irradiation in THO mutants, suggesting that RNAPII remains stalled at DNA lesions. Furthermore, Def1, a factor responsible for the degradation of stalled RNAPII, appears essential for the viability of THO mutants subjected to DNA damage. Our results indicate that RNAPII is not proficient for TCR in mRNP biogenesis and export mutants, opening new perspectives on our knowledge of TCR in eukaryotic cells.
doi_str_mv 10.1093/nar/gkm373
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1919492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkm373</oup_id><sourcerecordid>20268534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-d8675f1a6ed99e135ca3ba2ac037a1479b8c33050f38d0651445dd5c91e300373</originalsourceid><addsrcrecordid>eNqF0U1rFTEUBuAgir2tbvwBGgRdCGNPJt8bQUr9gFJF7TrkZjK3qTPJmMxY_femzMWvha6yyJOXk_Mi9IDAcwKaHkebj3efRyrpLbQhVLQN06K9jTZAgTcEmDpAh6VcARBGOLuLDojkVCoiNug8-mvsUozezSFFnHo8fjh_j7ch7Xz0JRRsY4f9tynlGV-H-RLP2cbicphuHjQuLdPgO5z9ZEO-h-70dij-_v48QhevTj-dvGnO3r1-e_LyrHFMqbnplJC8J1b4TmtPKHeWbm1rHVBpCZN6qxytw0NPVQeCE8Z413GniadQDT1CL9bcadmOvnM-1qkGM-Uw2vzdJBvMnzcxXJpd-mqIJprptgY83Qfk9GXxZTZjKM4Pg40-LcVIEFqBpP-FLbRCccoqfPwXvEpLjnUL1YBomWK8omcrcjmVkn3_c2QC5qZMU8s0a5kVP_z9k7_ovr0KnqygdvDvoEer620ydpdDMRcfWyB1l1JpCZz-ADAOsYk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200624845</pqid></control><display><type>article</type><title>new connection of mRNP biogenesis and export with transcription-coupled repair</title><source>Oxford Open Access Journals</source><creator>Gaillard, Hélène ; Wellinger, Ralf Erik ; Aguilera, Andrés</creator><creatorcontrib>Gaillard, Hélène ; Wellinger, Ralf Erik ; Aguilera, Andrés</creatorcontrib><description>Although DNA repair is faster in the transcribed strand of active genes, little is known about the possible contribution of mRNP biogenesis and export in transcription-coupled repair (TCR). Interestingly, mutants of THO, a transcription complex involved in maintenance of genome integrity, mRNP biogenesis and export, were recently found to be deficient in nucleotide excision repair. In this study we show by molecular DNA repair analysis, that Sub2-Yra1 and Thp1-Sac3, two main mRNA export complexes, are required for efficient TCR in yeast. Careful analysis revealed that THO mutants are also specifically affected in TCR. Ribozyme-mediated mRNA self-cleavage between two hot spots for UV damage showed that efficient TCR does not depend on the nascent mRNA, neither in wild-type nor in mutant cells. Along with severe UV damage-dependent loss in processivity, RNAPII was found binding to chromatin upon UV irradiation in THO mutants, suggesting that RNAPII remains stalled at DNA lesions. Furthermore, Def1, a factor responsible for the degradation of stalled RNAPII, appears essential for the viability of THO mutants subjected to DNA damage. Our results indicate that RNAPII is not proficient for TCR in mRNP biogenesis and export mutants, opening new perspectives on our knowledge of TCR in eukaryotic cells.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkm373</identifier><identifier>PMID: 17537816</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Active Transport, Cell Nucleus ; Cell Nucleus - metabolism ; Chromosomal Proteins, Non-Histone - physiology ; DNA Damage ; DNA Repair ; Gene Deletion ; Genes, Fungal ; Genome, Fungal ; Models, Genetic ; Molecular Biology ; Ribonucleoproteins - metabolism ; RNA Polymerase II - metabolism ; RNA, Messenger - metabolism ; Saccharomyces cerevisiae Proteins - physiology ; Transcription Factors - genetics ; Transcription, Genetic ; Ultraviolet Rays</subject><ispartof>Nucleic acids research, 2007-06, Vol.35 (12), p.3893-3906</ispartof><rights>2007 The Author(s) 2007</rights><rights>2007 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-d8675f1a6ed99e135ca3ba2ac037a1479b8c33050f38d0651445dd5c91e300373</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1919492/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1919492/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1604,27924,27925,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/nar/gkm373$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17537816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaillard, Hélène</creatorcontrib><creatorcontrib>Wellinger, Ralf Erik</creatorcontrib><creatorcontrib>Aguilera, Andrés</creatorcontrib><title>new connection of mRNP biogenesis and export with transcription-coupled repair</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Although DNA repair is faster in the transcribed strand of active genes, little is known about the possible contribution of mRNP biogenesis and export in transcription-coupled repair (TCR). Interestingly, mutants of THO, a transcription complex involved in maintenance of genome integrity, mRNP biogenesis and export, were recently found to be deficient in nucleotide excision repair. In this study we show by molecular DNA repair analysis, that Sub2-Yra1 and Thp1-Sac3, two main mRNA export complexes, are required for efficient TCR in yeast. Careful analysis revealed that THO mutants are also specifically affected in TCR. Ribozyme-mediated mRNA self-cleavage between two hot spots for UV damage showed that efficient TCR does not depend on the nascent mRNA, neither in wild-type nor in mutant cells. Along with severe UV damage-dependent loss in processivity, RNAPII was found binding to chromatin upon UV irradiation in THO mutants, suggesting that RNAPII remains stalled at DNA lesions. Furthermore, Def1, a factor responsible for the degradation of stalled RNAPII, appears essential for the viability of THO mutants subjected to DNA damage. Our results indicate that RNAPII is not proficient for TCR in mRNP biogenesis and export mutants, opening new perspectives on our knowledge of TCR in eukaryotic cells.</description><subject>Active Transport, Cell Nucleus</subject><subject>Cell Nucleus - metabolism</subject><subject>Chromosomal Proteins, Non-Histone - physiology</subject><subject>DNA Damage</subject><subject>DNA Repair</subject><subject>Gene Deletion</subject><subject>Genes, Fungal</subject><subject>Genome, Fungal</subject><subject>Models, Genetic</subject><subject>Molecular Biology</subject><subject>Ribonucleoproteins - metabolism</subject><subject>RNA Polymerase II - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><subject>Transcription Factors - genetics</subject><subject>Transcription, Genetic</subject><subject>Ultraviolet Rays</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1rFTEUBuAgir2tbvwBGgRdCGNPJt8bQUr9gFJF7TrkZjK3qTPJmMxY_femzMWvha6yyJOXk_Mi9IDAcwKaHkebj3efRyrpLbQhVLQN06K9jTZAgTcEmDpAh6VcARBGOLuLDojkVCoiNug8-mvsUozezSFFnHo8fjh_j7ch7Xz0JRRsY4f9tynlGV-H-RLP2cbicphuHjQuLdPgO5z9ZEO-h-70dij-_v48QhevTj-dvGnO3r1-e_LyrHFMqbnplJC8J1b4TmtPKHeWbm1rHVBpCZN6qxytw0NPVQeCE8Z413GniadQDT1CL9bcadmOvnM-1qkGM-Uw2vzdJBvMnzcxXJpd-mqIJprptgY83Qfk9GXxZTZjKM4Pg40-LcVIEFqBpP-FLbRCccoqfPwXvEpLjnUL1YBomWK8omcrcjmVkn3_c2QC5qZMU8s0a5kVP_z9k7_ovr0KnqygdvDvoEer620ydpdDMRcfWyB1l1JpCZz-ADAOsYk</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Gaillard, Hélène</creator><creator>Wellinger, Ralf Erik</creator><creator>Aguilera, Andrés</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070601</creationdate><title>new connection of mRNP biogenesis and export with transcription-coupled repair</title><author>Gaillard, Hélène ; Wellinger, Ralf Erik ; Aguilera, Andrés</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-d8675f1a6ed99e135ca3ba2ac037a1479b8c33050f38d0651445dd5c91e300373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Active Transport, Cell Nucleus</topic><topic>Cell Nucleus - metabolism</topic><topic>Chromosomal Proteins, Non-Histone - physiology</topic><topic>DNA Damage</topic><topic>DNA Repair</topic><topic>Gene Deletion</topic><topic>Genes, Fungal</topic><topic>Genome, Fungal</topic><topic>Models, Genetic</topic><topic>Molecular Biology</topic><topic>Ribonucleoproteins - metabolism</topic><topic>RNA Polymerase II - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><topic>Transcription Factors - genetics</topic><topic>Transcription, Genetic</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaillard, Hélène</creatorcontrib><creatorcontrib>Wellinger, Ralf Erik</creatorcontrib><creatorcontrib>Aguilera, Andrés</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gaillard, Hélène</au><au>Wellinger, Ralf Erik</au><au>Aguilera, Andrés</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>new connection of mRNP biogenesis and export with transcription-coupled repair</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2007-06-01</date><risdate>2007</risdate><volume>35</volume><issue>12</issue><spage>3893</spage><epage>3906</epage><pages>3893-3906</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Although DNA repair is faster in the transcribed strand of active genes, little is known about the possible contribution of mRNP biogenesis and export in transcription-coupled repair (TCR). Interestingly, mutants of THO, a transcription complex involved in maintenance of genome integrity, mRNP biogenesis and export, were recently found to be deficient in nucleotide excision repair. In this study we show by molecular DNA repair analysis, that Sub2-Yra1 and Thp1-Sac3, two main mRNA export complexes, are required for efficient TCR in yeast. Careful analysis revealed that THO mutants are also specifically affected in TCR. Ribozyme-mediated mRNA self-cleavage between two hot spots for UV damage showed that efficient TCR does not depend on the nascent mRNA, neither in wild-type nor in mutant cells. Along with severe UV damage-dependent loss in processivity, RNAPII was found binding to chromatin upon UV irradiation in THO mutants, suggesting that RNAPII remains stalled at DNA lesions. Furthermore, Def1, a factor responsible for the degradation of stalled RNAPII, appears essential for the viability of THO mutants subjected to DNA damage. Our results indicate that RNAPII is not proficient for TCR in mRNP biogenesis and export mutants, opening new perspectives on our knowledge of TCR in eukaryotic cells.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>17537816</pmid><doi>10.1093/nar/gkm373</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2007-06, Vol.35 (12), p.3893-3906
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1919492
source Oxford Open Access Journals
subjects Active Transport, Cell Nucleus
Cell Nucleus - metabolism
Chromosomal Proteins, Non-Histone - physiology
DNA Damage
DNA Repair
Gene Deletion
Genes, Fungal
Genome, Fungal
Models, Genetic
Molecular Biology
Ribonucleoproteins - metabolism
RNA Polymerase II - metabolism
RNA, Messenger - metabolism
Saccharomyces cerevisiae Proteins - physiology
Transcription Factors - genetics
Transcription, Genetic
Ultraviolet Rays
title new connection of mRNP biogenesis and export with transcription-coupled repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=new%20connection%20of%20mRNP%20biogenesis%20and%20export%20with%20transcription-coupled%20repair&rft.jtitle=Nucleic%20acids%20research&rft.au=Gaillard,%20H%C3%A9l%C3%A8ne&rft.date=2007-06-01&rft.volume=35&rft.issue=12&rft.spage=3893&rft.epage=3906&rft.pages=3893-3906&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkm373&rft_dat=%3Cproquest_TOX%3E20268534%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200624845&rft_id=info:pmid/17537816&rft_oup_id=10.1093/nar/gkm373&rfr_iscdi=true