The role of GlnD in ammonia assimilation in Mycobacterium tuberculosis

Summary The control of ammonia assimilation in Mycobacterium tuberculosis is poorly understood. We have been investigating a regulatory cascade predicted to control the activity of glutamine synthetase (GS). We previously demonstrated that the GS-modifying protein, GlnE (an adenylyl transferase), is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tuberculosis (Edinburgh, Scotland) Scotland), 2007-07, Vol.87 (4), p.384-390
Hauptverfasser: Read, Rose, Pashley, Carey A, Smith, Debbie, Parish, Tanya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 390
container_issue 4
container_start_page 384
container_title Tuberculosis (Edinburgh, Scotland)
container_volume 87
creator Read, Rose
Pashley, Carey A
Smith, Debbie
Parish, Tanya
description Summary The control of ammonia assimilation in Mycobacterium tuberculosis is poorly understood. We have been investigating a regulatory cascade predicted to control the activity of glutamine synthetase (GS). We previously demonstrated that the GS-modifying protein, GlnE (an adenylyl transferase), is essential for M. tuberculosis growth. GlnD, a uridylyl transferase, is involved in the control of GlnE activity in other bacteria. In M. tuberculosis , glnD is arranged in an apparent operon with amt and glnB ; all three genes are up-regulated in a low-ammonia medium. We constructed an in-frame deletion of glnD by homologous recombination. The mutant had no growth defect in media containing different nitrogen sources. Total GS activity in culture filtrates was markedly reduced in the mutant, although activity in cell-free extracts remained normal. Virulence was unaffected in both in vitro and in vivo model systems of infection, indicating that the presence of extra-cellular GS is not critical for virulence and that the residual intra-cellular GS activity is sufficient. Thus although GlnD does play a role in the control of ammonia assimilation, it is not required for virulence.
doi_str_mv 10.1016/j.tube.2006.12.003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1913930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1472979206001223</els_id><sourcerecordid>70657052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-f16285118930fd9cb23973ffc3d2b11add089e930d7dbea493526c7f8e85ebdd3</originalsourceid><addsrcrecordid>eNqFUk1v1TAQjBCIfsAf4IBy4pbgtZM4llAl1NIWqaiHFomb5dgb6odjFzup9P49jt4T0B7g5JV3ZuzdmaJ4A6QGAt37TT0vA9aUkK4GWhPCnhWH0HNW0R6-Pc91w2kluKAHxVFKG5JJpCcviwPgjLCGN4fF-e0dljE4LMNYXjh_VlpfqmkK3qpSpWQn69Rsg1_vv2x1GJSeMdplKtfHo15cSDa9Kl6MyiV8vT-Pi6_nn25PL6ur64vPpx-vKt0yMVcjdLRvAXrByGiEHigTnI2jZoYOAMoY0gvMTcPNgKoRrKWd5mOPfYuDMey4ONnp3i_DhEajn6Ny8j7aScWtDMrKxx1v7-T38CBBAMu6WeDdXiCGnwumWU42aXROeQxLkpx0LSct_S8QREfapoUMpDugjiGliOPv3wCRq09yI9dVydUnCVRmnzLp7d9z_KHsjcmADzsA5m0-WIwyaYteo7ER9SxNsP_WP3lC1856q5X7gVtMm7BEn32SIFMmyJs1KWtQSJdDQiljvwCVdbpe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19605451</pqid></control><display><type>article</type><title>The role of GlnD in ammonia assimilation in Mycobacterium tuberculosis</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Read, Rose ; Pashley, Carey A ; Smith, Debbie ; Parish, Tanya</creator><creatorcontrib>Read, Rose ; Pashley, Carey A ; Smith, Debbie ; Parish, Tanya</creatorcontrib><description>Summary The control of ammonia assimilation in Mycobacterium tuberculosis is poorly understood. We have been investigating a regulatory cascade predicted to control the activity of glutamine synthetase (GS). We previously demonstrated that the GS-modifying protein, GlnE (an adenylyl transferase), is essential for M. tuberculosis growth. GlnD, a uridylyl transferase, is involved in the control of GlnE activity in other bacteria. In M. tuberculosis , glnD is arranged in an apparent operon with amt and glnB ; all three genes are up-regulated in a low-ammonia medium. We constructed an in-frame deletion of glnD by homologous recombination. The mutant had no growth defect in media containing different nitrogen sources. Total GS activity in culture filtrates was markedly reduced in the mutant, although activity in cell-free extracts remained normal. Virulence was unaffected in both in vitro and in vivo model systems of infection, indicating that the presence of extra-cellular GS is not critical for virulence and that the residual intra-cellular GS activity is sufficient. Thus although GlnD does play a role in the control of ammonia assimilation, it is not required for virulence.</description><identifier>ISSN: 1472-9792</identifier><identifier>EISSN: 1873-281X</identifier><identifier>DOI: 10.1016/j.tube.2006.12.003</identifier><identifier>PMID: 17303474</identifier><language>eng</language><publisher>Scotland: Elsevier Ltd</publisher><subject>Ammonia - metabolism ; Animals ; Catalysis ; Gene regulation ; Genes, Bacterial - physiology ; Glutamate-Ammonia Ligase - metabolism ; Glutamine synthetase ; In Vitro Techniques ; Infectious Disease ; Macrophages - microbiology ; Mice ; Mice, SCID ; Mutant Proteins ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - genetics ; Mycobacterium tuberculosis - metabolism ; Nitrogen metabolism ; Protein Processing, Post-Translational ; Pulmonary/Respiratory ; Reverse Transcriptase Polymerase Chain Reaction ; Sequence Deletion ; Virulence</subject><ispartof>Tuberculosis (Edinburgh, Scotland), 2007-07, Vol.87 (4), p.384-390</ispartof><rights>Elsevier Ltd</rights><rights>2007 Elsevier Ltd</rights><rights>2007 Elsevier Ltd. 2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-f16285118930fd9cb23973ffc3d2b11add089e930d7dbea493526c7f8e85ebdd3</citedby><cites>FETCH-LOGICAL-c539t-f16285118930fd9cb23973ffc3d2b11add089e930d7dbea493526c7f8e85ebdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tube.2006.12.003$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17303474$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Read, Rose</creatorcontrib><creatorcontrib>Pashley, Carey A</creatorcontrib><creatorcontrib>Smith, Debbie</creatorcontrib><creatorcontrib>Parish, Tanya</creatorcontrib><title>The role of GlnD in ammonia assimilation in Mycobacterium tuberculosis</title><title>Tuberculosis (Edinburgh, Scotland)</title><addtitle>Tuberculosis (Edinb)</addtitle><description>Summary The control of ammonia assimilation in Mycobacterium tuberculosis is poorly understood. We have been investigating a regulatory cascade predicted to control the activity of glutamine synthetase (GS). We previously demonstrated that the GS-modifying protein, GlnE (an adenylyl transferase), is essential for M. tuberculosis growth. GlnD, a uridylyl transferase, is involved in the control of GlnE activity in other bacteria. In M. tuberculosis , glnD is arranged in an apparent operon with amt and glnB ; all three genes are up-regulated in a low-ammonia medium. We constructed an in-frame deletion of glnD by homologous recombination. The mutant had no growth defect in media containing different nitrogen sources. Total GS activity in culture filtrates was markedly reduced in the mutant, although activity in cell-free extracts remained normal. Virulence was unaffected in both in vitro and in vivo model systems of infection, indicating that the presence of extra-cellular GS is not critical for virulence and that the residual intra-cellular GS activity is sufficient. Thus although GlnD does play a role in the control of ammonia assimilation, it is not required for virulence.</description><subject>Ammonia - metabolism</subject><subject>Animals</subject><subject>Catalysis</subject><subject>Gene regulation</subject><subject>Genes, Bacterial - physiology</subject><subject>Glutamate-Ammonia Ligase - metabolism</subject><subject>Glutamine synthetase</subject><subject>In Vitro Techniques</subject><subject>Infectious Disease</subject><subject>Macrophages - microbiology</subject><subject>Mice</subject><subject>Mice, SCID</subject><subject>Mutant Proteins</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Mycobacterium tuberculosis - metabolism</subject><subject>Nitrogen metabolism</subject><subject>Protein Processing, Post-Translational</subject><subject>Pulmonary/Respiratory</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Sequence Deletion</subject><subject>Virulence</subject><issn>1472-9792</issn><issn>1873-281X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUk1v1TAQjBCIfsAf4IBy4pbgtZM4llAl1NIWqaiHFomb5dgb6odjFzup9P49jt4T0B7g5JV3ZuzdmaJ4A6QGAt37TT0vA9aUkK4GWhPCnhWH0HNW0R6-Pc91w2kluKAHxVFKG5JJpCcviwPgjLCGN4fF-e0dljE4LMNYXjh_VlpfqmkK3qpSpWQn69Rsg1_vv2x1GJSeMdplKtfHo15cSDa9Kl6MyiV8vT-Pi6_nn25PL6ur64vPpx-vKt0yMVcjdLRvAXrByGiEHigTnI2jZoYOAMoY0gvMTcPNgKoRrKWd5mOPfYuDMey4ONnp3i_DhEajn6Ny8j7aScWtDMrKxx1v7-T38CBBAMu6WeDdXiCGnwumWU42aXROeQxLkpx0LSct_S8QREfapoUMpDugjiGliOPv3wCRq09yI9dVydUnCVRmnzLp7d9z_KHsjcmADzsA5m0-WIwyaYteo7ER9SxNsP_WP3lC1856q5X7gVtMm7BEn32SIFMmyJs1KWtQSJdDQiljvwCVdbpe</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Read, Rose</creator><creator>Pashley, Carey A</creator><creator>Smith, Debbie</creator><creator>Parish, Tanya</creator><general>Elsevier Ltd</general><general>Churchill Livingstone</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070701</creationdate><title>The role of GlnD in ammonia assimilation in Mycobacterium tuberculosis</title><author>Read, Rose ; Pashley, Carey A ; Smith, Debbie ; Parish, Tanya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-f16285118930fd9cb23973ffc3d2b11add089e930d7dbea493526c7f8e85ebdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Ammonia - metabolism</topic><topic>Animals</topic><topic>Catalysis</topic><topic>Gene regulation</topic><topic>Genes, Bacterial - physiology</topic><topic>Glutamate-Ammonia Ligase - metabolism</topic><topic>Glutamine synthetase</topic><topic>In Vitro Techniques</topic><topic>Infectious Disease</topic><topic>Macrophages - microbiology</topic><topic>Mice</topic><topic>Mice, SCID</topic><topic>Mutant Proteins</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Mycobacterium tuberculosis - metabolism</topic><topic>Nitrogen metabolism</topic><topic>Protein Processing, Post-Translational</topic><topic>Pulmonary/Respiratory</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Sequence Deletion</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Read, Rose</creatorcontrib><creatorcontrib>Pashley, Carey A</creatorcontrib><creatorcontrib>Smith, Debbie</creatorcontrib><creatorcontrib>Parish, Tanya</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Tuberculosis (Edinburgh, Scotland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Read, Rose</au><au>Pashley, Carey A</au><au>Smith, Debbie</au><au>Parish, Tanya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of GlnD in ammonia assimilation in Mycobacterium tuberculosis</atitle><jtitle>Tuberculosis (Edinburgh, Scotland)</jtitle><addtitle>Tuberculosis (Edinb)</addtitle><date>2007-07-01</date><risdate>2007</risdate><volume>87</volume><issue>4</issue><spage>384</spage><epage>390</epage><pages>384-390</pages><issn>1472-9792</issn><eissn>1873-281X</eissn><abstract>Summary The control of ammonia assimilation in Mycobacterium tuberculosis is poorly understood. We have been investigating a regulatory cascade predicted to control the activity of glutamine synthetase (GS). We previously demonstrated that the GS-modifying protein, GlnE (an adenylyl transferase), is essential for M. tuberculosis growth. GlnD, a uridylyl transferase, is involved in the control of GlnE activity in other bacteria. In M. tuberculosis , glnD is arranged in an apparent operon with amt and glnB ; all three genes are up-regulated in a low-ammonia medium. We constructed an in-frame deletion of glnD by homologous recombination. The mutant had no growth defect in media containing different nitrogen sources. Total GS activity in culture filtrates was markedly reduced in the mutant, although activity in cell-free extracts remained normal. Virulence was unaffected in both in vitro and in vivo model systems of infection, indicating that the presence of extra-cellular GS is not critical for virulence and that the residual intra-cellular GS activity is sufficient. Thus although GlnD does play a role in the control of ammonia assimilation, it is not required for virulence.</abstract><cop>Scotland</cop><pub>Elsevier Ltd</pub><pmid>17303474</pmid><doi>10.1016/j.tube.2006.12.003</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1472-9792
ispartof Tuberculosis (Edinburgh, Scotland), 2007-07, Vol.87 (4), p.384-390
issn 1472-9792
1873-281X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1913930
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Ammonia - metabolism
Animals
Catalysis
Gene regulation
Genes, Bacterial - physiology
Glutamate-Ammonia Ligase - metabolism
Glutamine synthetase
In Vitro Techniques
Infectious Disease
Macrophages - microbiology
Mice
Mice, SCID
Mutant Proteins
Mycobacterium tuberculosis
Mycobacterium tuberculosis - genetics
Mycobacterium tuberculosis - metabolism
Nitrogen metabolism
Protein Processing, Post-Translational
Pulmonary/Respiratory
Reverse Transcriptase Polymerase Chain Reaction
Sequence Deletion
Virulence
title The role of GlnD in ammonia assimilation in Mycobacterium tuberculosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20GlnD%20in%20ammonia%20assimilation%20in%20Mycobacterium%20tuberculosis&rft.jtitle=Tuberculosis%20(Edinburgh,%20Scotland)&rft.au=Read,%20Rose&rft.date=2007-07-01&rft.volume=87&rft.issue=4&rft.spage=384&rft.epage=390&rft.pages=384-390&rft.issn=1472-9792&rft.eissn=1873-281X&rft_id=info:doi/10.1016/j.tube.2006.12.003&rft_dat=%3Cproquest_pubme%3E70657052%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19605451&rft_id=info:pmid/17303474&rft_els_id=S1472979206001223&rfr_iscdi=true