Formation of DEG5 and DEG8 Complexes and Their Involvement in the Degradation of Photodamaged Photosystem II Reaction Center D1 Protein in Arabidopsis
The widely distributed DEGP proteases play important roles in the degradation of damaged and misfolded proteins. Arabidopsis thaliana contains 16 DEGP-like proteases, four of which are located in the chloroplast. Here, we show that DEG5 and DEG8 form a hexamer in the thylakoid lumen and that recombi...
Gespeichert in:
Veröffentlicht in: | The Plant cell 2007-04, Vol.19 (4), p.1347-1361 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The widely distributed DEGP proteases play important roles in the degradation of damaged and misfolded proteins. Arabidopsis thaliana contains 16 DEGP-like proteases, four of which are located in the chloroplast. Here, we show that DEG5 and DEG8 form a hexamer in the thylakoid lumen and that recombinant DEG8 is proteolytically active toward both a model substrate (β-casein) and photodamaged D1 protein of photosystem II (PSII), producing 16-kD N-terminal and 18-kD C-terminal fragments. Inactivation of DEG5 and DEG8 resulted in increased sensitivity to photoinhibition. Turnover of newly synthesized D1 protein in the deg5 deg8 double mutant was impaired, and the degradation of D1 in the presence of the chloroplast protein synthesis inhibitor lincomycin under high-light treatment was slowed in the mutants. Thus, DEG5 and DEG8 are important for efficient turnover of the D1 protein and for protection against photoinhibition in vivo. The deg5 deg8 double mutant showed increased photosensitivity and reduced rates of D1 degradation compared with single mutants of deg5 and deg8. A 16-kD N-terminal degradation fragment of the D1 protein was detected in wild-type plants but not in the deg5 deg8 mutant following in vivo photoinhibition. Therefore, our results suggest that DEG5 and DEG8 have a synergistic function in the primary cleavage of the CD loop of the PSII reaction center protein D1. |
---|---|
ISSN: | 1040-4651 1532-298X |
DOI: | 10.1105/tpc.106.049510 |