Maturation of firing pattern in chick vestibular nucleus neurons

The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibuloocular and vestibulocollic reflexes. In birds and mammals, spontaneous and stimulus-evoked firing of action potentials is essential for vestibular nucleus neurons to generate mature vesti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 2006-01, Vol.141 (2), p.711-726
Hauptverfasser: Shao, M., Hirsch, J.C., Peusner, K.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 726
container_issue 2
container_start_page 711
container_title Neuroscience
container_volume 141
creator Shao, M.
Hirsch, J.C.
Peusner, K.D.
description The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibuloocular and vestibulocollic reflexes. In birds and mammals, spontaneous and stimulus-evoked firing of action potentials is essential for vestibular nucleus neurons to generate mature vestibular reflex activity. The emergence of spike-firing pattern and the underlying ion channels were studied in morphologically-identified principal cells using whole-cell patch-clamp recordings from brain slices of late-term embryos (embryonic day 16) and hatchling chickens (hatching day 1 and hatching day 5). Spontaneous spike activity emerged around the perinatal period, since at embryonic day 16 none of the principal cells generated spontaneous action potentials. However, at hatching day 1, 50% of the cells fired spontaneously (range, 3 to 32 spikes/s), which depended on synaptic transmission in most cells. By hatching day 5, 80% of the principal cells could fire action potentials spontaneously (range, 5 to 80 spikes/s), and this activity was independent of synaptic transmission and showed faster kinetics than at hatching day 1. Repetitive firing in response to depolarizing pulses appeared in the principal cells starting around embryonic day 16, when
doi_str_mv 10.1016/j.neuroscience.2006.03.061
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1899235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306452206004349</els_id><sourcerecordid>19719435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-d8019a8f7d8cc06f0f6a6cd003b3c077a684a019fe28bfceddd45a5e4c018d0d3</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0EokvhK6AICW5Jx4njOBxQUfnTSq24wNnyjsetl6yz2MlKfHu83YiWG7744N-8eX6PsTccKg5cnm2qQHMcE3oKSFUNICtoKpD8CVtx1TVl1wrxlK2gAVmKtq5P2IuUNpBPK5rn7IRL2UPNxYqd35hpjmbyYyhGVzgffbgtdmaaKIbChwLvPP4s9pQmv54HE4sw40BzKu49hPSSPXNmSPRquU_Zjy-fv19cltffvl5dfLwuUfJ6Kq0C3hvlOqsQQTpw0ki0AM26Qeg6I5UwGXFUq7VDstaK1rQkELiyYJtT9uGou5vXW7JIYYpm0Lvotyb-1qPx-t-X4O_07bjXXPV93bRZ4N0iEMdfc_6P3vqENAwm0DgnzfuO9-IefH8EMWecIrm_SzjoQwF6ox8XoA8FaGh0LiAPv35s82F0STwDbxfAJDSDiyagTw-cylQvDtynI0c51L2nqJd11kfCSdvR_4-fP-iqrcw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19719435</pqid></control><display><type>article</type><title>Maturation of firing pattern in chick vestibular nucleus neurons</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Shao, M. ; Hirsch, J.C. ; Peusner, K.D.</creator><creatorcontrib>Shao, M. ; Hirsch, J.C. ; Peusner, K.D.</creatorcontrib><description>The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibuloocular and vestibulocollic reflexes. In birds and mammals, spontaneous and stimulus-evoked firing of action potentials is essential for vestibular nucleus neurons to generate mature vestibular reflex activity. The emergence of spike-firing pattern and the underlying ion channels were studied in morphologically-identified principal cells using whole-cell patch-clamp recordings from brain slices of late-term embryos (embryonic day 16) and hatchling chickens (hatching day 1 and hatching day 5). Spontaneous spike activity emerged around the perinatal period, since at embryonic day 16 none of the principal cells generated spontaneous action potentials. However, at hatching day 1, 50% of the cells fired spontaneously (range, 3 to 32 spikes/s), which depended on synaptic transmission in most cells. By hatching day 5, 80% of the principal cells could fire action potentials spontaneously (range, 5 to 80 spikes/s), and this activity was independent of synaptic transmission and showed faster kinetics than at hatching day 1. Repetitive firing in response to depolarizing pulses appeared in the principal cells starting around embryonic day 16, when &lt;20% of the neurons fired repetitively. However, almost 90% of the principal cells exhibited repetitive firing on depolarization at hatching day 1, and 100% by hatching day 5. From embryonic day 16 to hatching day 5, the gain for evoked spike firing increased almost 10-fold. At hatching day 5, a persistent sodium channel was essential for the generation of spontaneous spike activity, while a small conductance, calcium-dependent potassium current modulated both the spontaneous and evoked spike firing activity. Altogether, these in vitro studies showed that during the perinatal period, the principal cells switched from displaying no spontaneous spike activity at resting membrane potential and generating one spike on depolarization to the tonic firing of spontaneous and evoked action potentials.</description><identifier>ISSN: 0306-4522</identifier><identifier>EISSN: 1873-7544</identifier><identifier>DOI: 10.1016/j.neuroscience.2006.03.061</identifier><identifier>PMID: 16690214</identifier><identifier>CODEN: NRSCDN</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>2-Amino-5-phosphonovalerate - pharmacology ; 6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology ; Action Potentials - drug effects ; Action Potentials - physiology ; Action Potentials - radiation effects ; Animals ; Apamin - pharmacology ; Bicuculline - pharmacology ; Biological and medical sciences ; brain slice ; Cesium - pharmacology ; Chick Embryo ; Chlorides - pharmacology ; Dose-Response Relationship, Radiation ; Drug Combinations ; Electric Stimulation - methods ; Excitatory Amino Acid Antagonists - pharmacology ; Excitatory Postsynaptic Potentials - drug effects ; Fundamental and applied biological sciences. Psychology ; GABA Antagonists - pharmacology ; In Vitro Techniques ; intrinsic membrane properties ; Lysine - analogs &amp; derivatives ; Lysine - metabolism ; Neurons - classification ; Neurons - drug effects ; Neurons - physiology ; Sodium Channel Blockers - pharmacology ; spike activity ; Strychnine - pharmacology ; Tetrodotoxin - pharmacology ; Vertebrates: nervous system and sense organs ; Vestibular Nuclei - cytology ; Vestibular Nuclei - embryology</subject><ispartof>Neuroscience, 2006-01, Vol.141 (2), p.711-726</ispartof><rights>2006 IBRO</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-d8019a8f7d8cc06f0f6a6cd003b3c077a684a019fe28bfceddd45a5e4c018d0d3</citedby><cites>FETCH-LOGICAL-c612t-d8019a8f7d8cc06f0f6a6cd003b3c077a684a019fe28bfceddd45a5e4c018d0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0306452206004349$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18021944$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16690214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shao, M.</creatorcontrib><creatorcontrib>Hirsch, J.C.</creatorcontrib><creatorcontrib>Peusner, K.D.</creatorcontrib><title>Maturation of firing pattern in chick vestibular nucleus neurons</title><title>Neuroscience</title><addtitle>Neuroscience</addtitle><description>The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibuloocular and vestibulocollic reflexes. In birds and mammals, spontaneous and stimulus-evoked firing of action potentials is essential for vestibular nucleus neurons to generate mature vestibular reflex activity. The emergence of spike-firing pattern and the underlying ion channels were studied in morphologically-identified principal cells using whole-cell patch-clamp recordings from brain slices of late-term embryos (embryonic day 16) and hatchling chickens (hatching day 1 and hatching day 5). Spontaneous spike activity emerged around the perinatal period, since at embryonic day 16 none of the principal cells generated spontaneous action potentials. However, at hatching day 1, 50% of the cells fired spontaneously (range, 3 to 32 spikes/s), which depended on synaptic transmission in most cells. By hatching day 5, 80% of the principal cells could fire action potentials spontaneously (range, 5 to 80 spikes/s), and this activity was independent of synaptic transmission and showed faster kinetics than at hatching day 1. Repetitive firing in response to depolarizing pulses appeared in the principal cells starting around embryonic day 16, when &lt;20% of the neurons fired repetitively. However, almost 90% of the principal cells exhibited repetitive firing on depolarization at hatching day 1, and 100% by hatching day 5. From embryonic day 16 to hatching day 5, the gain for evoked spike firing increased almost 10-fold. At hatching day 5, a persistent sodium channel was essential for the generation of spontaneous spike activity, while a small conductance, calcium-dependent potassium current modulated both the spontaneous and evoked spike firing activity. Altogether, these in vitro studies showed that during the perinatal period, the principal cells switched from displaying no spontaneous spike activity at resting membrane potential and generating one spike on depolarization to the tonic firing of spontaneous and evoked action potentials.</description><subject>2-Amino-5-phosphonovalerate - pharmacology</subject><subject>6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology</subject><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Action Potentials - radiation effects</subject><subject>Animals</subject><subject>Apamin - pharmacology</subject><subject>Bicuculline - pharmacology</subject><subject>Biological and medical sciences</subject><subject>brain slice</subject><subject>Cesium - pharmacology</subject><subject>Chick Embryo</subject><subject>Chlorides - pharmacology</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Drug Combinations</subject><subject>Electric Stimulation - methods</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Excitatory Postsynaptic Potentials - drug effects</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GABA Antagonists - pharmacology</subject><subject>In Vitro Techniques</subject><subject>intrinsic membrane properties</subject><subject>Lysine - analogs &amp; derivatives</subject><subject>Lysine - metabolism</subject><subject>Neurons - classification</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Sodium Channel Blockers - pharmacology</subject><subject>spike activity</subject><subject>Strychnine - pharmacology</subject><subject>Tetrodotoxin - pharmacology</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Vestibular Nuclei - cytology</subject><subject>Vestibular Nuclei - embryology</subject><issn>0306-4522</issn><issn>1873-7544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9v1DAQxS0EokvhK6AICW5Jx4njOBxQUfnTSq24wNnyjsetl6yz2MlKfHu83YiWG7744N-8eX6PsTccKg5cnm2qQHMcE3oKSFUNICtoKpD8CVtx1TVl1wrxlK2gAVmKtq5P2IuUNpBPK5rn7IRL2UPNxYqd35hpjmbyYyhGVzgffbgtdmaaKIbChwLvPP4s9pQmv54HE4sw40BzKu49hPSSPXNmSPRquU_Zjy-fv19cltffvl5dfLwuUfJ6Kq0C3hvlOqsQQTpw0ki0AM26Qeg6I5UwGXFUq7VDstaK1rQkELiyYJtT9uGou5vXW7JIYYpm0Lvotyb-1qPx-t-X4O_07bjXXPV93bRZ4N0iEMdfc_6P3vqENAwm0DgnzfuO9-IefH8EMWecIrm_SzjoQwF6ox8XoA8FaGh0LiAPv35s82F0STwDbxfAJDSDiyagTw-cylQvDtynI0c51L2nqJd11kfCSdvR_4-fP-iqrcw</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Shao, M.</creator><creator>Hirsch, J.C.</creator><creator>Peusner, K.D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20060101</creationdate><title>Maturation of firing pattern in chick vestibular nucleus neurons</title><author>Shao, M. ; Hirsch, J.C. ; Peusner, K.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-d8019a8f7d8cc06f0f6a6cd003b3c077a684a019fe28bfceddd45a5e4c018d0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>2-Amino-5-phosphonovalerate - pharmacology</topic><topic>6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology</topic><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Action Potentials - radiation effects</topic><topic>Animals</topic><topic>Apamin - pharmacology</topic><topic>Bicuculline - pharmacology</topic><topic>Biological and medical sciences</topic><topic>brain slice</topic><topic>Cesium - pharmacology</topic><topic>Chick Embryo</topic><topic>Chlorides - pharmacology</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Drug Combinations</topic><topic>Electric Stimulation - methods</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Excitatory Postsynaptic Potentials - drug effects</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GABA Antagonists - pharmacology</topic><topic>In Vitro Techniques</topic><topic>intrinsic membrane properties</topic><topic>Lysine - analogs &amp; derivatives</topic><topic>Lysine - metabolism</topic><topic>Neurons - classification</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Sodium Channel Blockers - pharmacology</topic><topic>spike activity</topic><topic>Strychnine - pharmacology</topic><topic>Tetrodotoxin - pharmacology</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Vestibular Nuclei - cytology</topic><topic>Vestibular Nuclei - embryology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, M.</creatorcontrib><creatorcontrib>Hirsch, J.C.</creatorcontrib><creatorcontrib>Peusner, K.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, M.</au><au>Hirsch, J.C.</au><au>Peusner, K.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maturation of firing pattern in chick vestibular nucleus neurons</atitle><jtitle>Neuroscience</jtitle><addtitle>Neuroscience</addtitle><date>2006-01-01</date><risdate>2006</risdate><volume>141</volume><issue>2</issue><spage>711</spage><epage>726</epage><pages>711-726</pages><issn>0306-4522</issn><eissn>1873-7544</eissn><coden>NRSCDN</coden><abstract>The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibuloocular and vestibulocollic reflexes. In birds and mammals, spontaneous and stimulus-evoked firing of action potentials is essential for vestibular nucleus neurons to generate mature vestibular reflex activity. The emergence of spike-firing pattern and the underlying ion channels were studied in morphologically-identified principal cells using whole-cell patch-clamp recordings from brain slices of late-term embryos (embryonic day 16) and hatchling chickens (hatching day 1 and hatching day 5). Spontaneous spike activity emerged around the perinatal period, since at embryonic day 16 none of the principal cells generated spontaneous action potentials. However, at hatching day 1, 50% of the cells fired spontaneously (range, 3 to 32 spikes/s), which depended on synaptic transmission in most cells. By hatching day 5, 80% of the principal cells could fire action potentials spontaneously (range, 5 to 80 spikes/s), and this activity was independent of synaptic transmission and showed faster kinetics than at hatching day 1. Repetitive firing in response to depolarizing pulses appeared in the principal cells starting around embryonic day 16, when &lt;20% of the neurons fired repetitively. However, almost 90% of the principal cells exhibited repetitive firing on depolarization at hatching day 1, and 100% by hatching day 5. From embryonic day 16 to hatching day 5, the gain for evoked spike firing increased almost 10-fold. At hatching day 5, a persistent sodium channel was essential for the generation of spontaneous spike activity, while a small conductance, calcium-dependent potassium current modulated both the spontaneous and evoked spike firing activity. Altogether, these in vitro studies showed that during the perinatal period, the principal cells switched from displaying no spontaneous spike activity at resting membrane potential and generating one spike on depolarization to the tonic firing of spontaneous and evoked action potentials.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>16690214</pmid><doi>10.1016/j.neuroscience.2006.03.061</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0306-4522
ispartof Neuroscience, 2006-01, Vol.141 (2), p.711-726
issn 0306-4522
1873-7544
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1899235
source MEDLINE; Elsevier ScienceDirect Journals
subjects 2-Amino-5-phosphonovalerate - pharmacology
6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology
Action Potentials - drug effects
Action Potentials - physiology
Action Potentials - radiation effects
Animals
Apamin - pharmacology
Bicuculline - pharmacology
Biological and medical sciences
brain slice
Cesium - pharmacology
Chick Embryo
Chlorides - pharmacology
Dose-Response Relationship, Radiation
Drug Combinations
Electric Stimulation - methods
Excitatory Amino Acid Antagonists - pharmacology
Excitatory Postsynaptic Potentials - drug effects
Fundamental and applied biological sciences. Psychology
GABA Antagonists - pharmacology
In Vitro Techniques
intrinsic membrane properties
Lysine - analogs & derivatives
Lysine - metabolism
Neurons - classification
Neurons - drug effects
Neurons - physiology
Sodium Channel Blockers - pharmacology
spike activity
Strychnine - pharmacology
Tetrodotoxin - pharmacology
Vertebrates: nervous system and sense organs
Vestibular Nuclei - cytology
Vestibular Nuclei - embryology
title Maturation of firing pattern in chick vestibular nucleus neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maturation%20of%20firing%20pattern%20in%20chick%20vestibular%20nucleus%20neurons&rft.jtitle=Neuroscience&rft.au=Shao,%20M.&rft.date=2006-01-01&rft.volume=141&rft.issue=2&rft.spage=711&rft.epage=726&rft.pages=711-726&rft.issn=0306-4522&rft.eissn=1873-7544&rft.coden=NRSCDN&rft_id=info:doi/10.1016/j.neuroscience.2006.03.061&rft_dat=%3Cproquest_pubme%3E19719435%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19719435&rft_id=info:pmid/16690214&rft_els_id=S0306452206004349&rfr_iscdi=true