Maturation of firing pattern in chick vestibular nucleus neurons
The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibuloocular and vestibulocollic reflexes. In birds and mammals, spontaneous and stimulus-evoked firing of action potentials is essential for vestibular nucleus neurons to generate mature vesti...
Gespeichert in:
Veröffentlicht in: | Neuroscience 2006-01, Vol.141 (2), p.711-726 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 726 |
---|---|
container_issue | 2 |
container_start_page | 711 |
container_title | Neuroscience |
container_volume | 141 |
creator | Shao, M. Hirsch, J.C. Peusner, K.D. |
description | The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibuloocular and vestibulocollic reflexes. In birds and mammals, spontaneous and stimulus-evoked firing of action potentials is essential for vestibular nucleus neurons to generate mature vestibular reflex activity. The emergence of spike-firing pattern and the underlying ion channels were studied in morphologically-identified principal cells using whole-cell patch-clamp recordings from brain slices of late-term embryos (embryonic day 16) and hatchling chickens (hatching day 1 and hatching day 5). Spontaneous spike activity emerged around the perinatal period, since at embryonic day 16 none of the principal cells generated spontaneous action potentials. However, at hatching day 1, 50% of the cells fired spontaneously (range, 3 to 32 spikes/s), which depended on synaptic transmission in most cells. By hatching day 5, 80% of the principal cells could fire action potentials spontaneously (range, 5 to 80 spikes/s), and this activity was independent of synaptic transmission and showed faster kinetics than at hatching day 1. Repetitive firing in response to depolarizing pulses appeared in the principal cells starting around embryonic day 16, when |
doi_str_mv | 10.1016/j.neuroscience.2006.03.061 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1899235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306452206004349</els_id><sourcerecordid>19719435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-d8019a8f7d8cc06f0f6a6cd003b3c077a684a019fe28bfceddd45a5e4c018d0d3</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0EokvhK6AICW5Jx4njOBxQUfnTSq24wNnyjsetl6yz2MlKfHu83YiWG7744N-8eX6PsTccKg5cnm2qQHMcE3oKSFUNICtoKpD8CVtx1TVl1wrxlK2gAVmKtq5P2IuUNpBPK5rn7IRL2UPNxYqd35hpjmbyYyhGVzgffbgtdmaaKIbChwLvPP4s9pQmv54HE4sw40BzKu49hPSSPXNmSPRquU_Zjy-fv19cltffvl5dfLwuUfJ6Kq0C3hvlOqsQQTpw0ki0AM26Qeg6I5UwGXFUq7VDstaK1rQkELiyYJtT9uGou5vXW7JIYYpm0Lvotyb-1qPx-t-X4O_07bjXXPV93bRZ4N0iEMdfc_6P3vqENAwm0DgnzfuO9-IefH8EMWecIrm_SzjoQwF6ox8XoA8FaGh0LiAPv35s82F0STwDbxfAJDSDiyagTw-cylQvDtynI0c51L2nqJd11kfCSdvR_4-fP-iqrcw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19719435</pqid></control><display><type>article</type><title>Maturation of firing pattern in chick vestibular nucleus neurons</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Shao, M. ; Hirsch, J.C. ; Peusner, K.D.</creator><creatorcontrib>Shao, M. ; Hirsch, J.C. ; Peusner, K.D.</creatorcontrib><description>The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibuloocular and vestibulocollic reflexes. In birds and mammals, spontaneous and stimulus-evoked firing of action potentials is essential for vestibular nucleus neurons to generate mature vestibular reflex activity. The emergence of spike-firing pattern and the underlying ion channels were studied in morphologically-identified principal cells using whole-cell patch-clamp recordings from brain slices of late-term embryos (embryonic day 16) and hatchling chickens (hatching day 1 and hatching day 5). Spontaneous spike activity emerged around the perinatal period, since at embryonic day 16 none of the principal cells generated spontaneous action potentials. However, at hatching day 1, 50% of the cells fired spontaneously (range, 3 to 32 spikes/s), which depended on synaptic transmission in most cells. By hatching day 5, 80% of the principal cells could fire action potentials spontaneously (range, 5 to 80 spikes/s), and this activity was independent of synaptic transmission and showed faster kinetics than at hatching day 1. Repetitive firing in response to depolarizing pulses appeared in the principal cells starting around embryonic day 16, when <20% of the neurons fired repetitively. However, almost 90% of the principal cells exhibited repetitive firing on depolarization at hatching day 1, and 100% by hatching day 5. From embryonic day 16 to hatching day 5, the gain for evoked spike firing increased almost 10-fold. At hatching day 5, a persistent sodium channel was essential for the generation of spontaneous spike activity, while a small conductance, calcium-dependent potassium current modulated both the spontaneous and evoked spike firing activity. Altogether, these
in vitro studies showed that during the perinatal period, the principal cells switched from displaying no spontaneous spike activity at resting membrane potential and generating one spike on depolarization to the tonic firing of spontaneous and evoked action potentials.</description><identifier>ISSN: 0306-4522</identifier><identifier>EISSN: 1873-7544</identifier><identifier>DOI: 10.1016/j.neuroscience.2006.03.061</identifier><identifier>PMID: 16690214</identifier><identifier>CODEN: NRSCDN</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>2-Amino-5-phosphonovalerate - pharmacology ; 6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology ; Action Potentials - drug effects ; Action Potentials - physiology ; Action Potentials - radiation effects ; Animals ; Apamin - pharmacology ; Bicuculline - pharmacology ; Biological and medical sciences ; brain slice ; Cesium - pharmacology ; Chick Embryo ; Chlorides - pharmacology ; Dose-Response Relationship, Radiation ; Drug Combinations ; Electric Stimulation - methods ; Excitatory Amino Acid Antagonists - pharmacology ; Excitatory Postsynaptic Potentials - drug effects ; Fundamental and applied biological sciences. Psychology ; GABA Antagonists - pharmacology ; In Vitro Techniques ; intrinsic membrane properties ; Lysine - analogs & derivatives ; Lysine - metabolism ; Neurons - classification ; Neurons - drug effects ; Neurons - physiology ; Sodium Channel Blockers - pharmacology ; spike activity ; Strychnine - pharmacology ; Tetrodotoxin - pharmacology ; Vertebrates: nervous system and sense organs ; Vestibular Nuclei - cytology ; Vestibular Nuclei - embryology</subject><ispartof>Neuroscience, 2006-01, Vol.141 (2), p.711-726</ispartof><rights>2006 IBRO</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-d8019a8f7d8cc06f0f6a6cd003b3c077a684a019fe28bfceddd45a5e4c018d0d3</citedby><cites>FETCH-LOGICAL-c612t-d8019a8f7d8cc06f0f6a6cd003b3c077a684a019fe28bfceddd45a5e4c018d0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0306452206004349$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18021944$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16690214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shao, M.</creatorcontrib><creatorcontrib>Hirsch, J.C.</creatorcontrib><creatorcontrib>Peusner, K.D.</creatorcontrib><title>Maturation of firing pattern in chick vestibular nucleus neurons</title><title>Neuroscience</title><addtitle>Neuroscience</addtitle><description>The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibuloocular and vestibulocollic reflexes. In birds and mammals, spontaneous and stimulus-evoked firing of action potentials is essential for vestibular nucleus neurons to generate mature vestibular reflex activity. The emergence of spike-firing pattern and the underlying ion channels were studied in morphologically-identified principal cells using whole-cell patch-clamp recordings from brain slices of late-term embryos (embryonic day 16) and hatchling chickens (hatching day 1 and hatching day 5). Spontaneous spike activity emerged around the perinatal period, since at embryonic day 16 none of the principal cells generated spontaneous action potentials. However, at hatching day 1, 50% of the cells fired spontaneously (range, 3 to 32 spikes/s), which depended on synaptic transmission in most cells. By hatching day 5, 80% of the principal cells could fire action potentials spontaneously (range, 5 to 80 spikes/s), and this activity was independent of synaptic transmission and showed faster kinetics than at hatching day 1. Repetitive firing in response to depolarizing pulses appeared in the principal cells starting around embryonic day 16, when <20% of the neurons fired repetitively. However, almost 90% of the principal cells exhibited repetitive firing on depolarization at hatching day 1, and 100% by hatching day 5. From embryonic day 16 to hatching day 5, the gain for evoked spike firing increased almost 10-fold. At hatching day 5, a persistent sodium channel was essential for the generation of spontaneous spike activity, while a small conductance, calcium-dependent potassium current modulated both the spontaneous and evoked spike firing activity. Altogether, these
in vitro studies showed that during the perinatal period, the principal cells switched from displaying no spontaneous spike activity at resting membrane potential and generating one spike on depolarization to the tonic firing of spontaneous and evoked action potentials.</description><subject>2-Amino-5-phosphonovalerate - pharmacology</subject><subject>6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology</subject><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Action Potentials - radiation effects</subject><subject>Animals</subject><subject>Apamin - pharmacology</subject><subject>Bicuculline - pharmacology</subject><subject>Biological and medical sciences</subject><subject>brain slice</subject><subject>Cesium - pharmacology</subject><subject>Chick Embryo</subject><subject>Chlorides - pharmacology</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Drug Combinations</subject><subject>Electric Stimulation - methods</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Excitatory Postsynaptic Potentials - drug effects</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GABA Antagonists - pharmacology</subject><subject>In Vitro Techniques</subject><subject>intrinsic membrane properties</subject><subject>Lysine - analogs & derivatives</subject><subject>Lysine - metabolism</subject><subject>Neurons - classification</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Sodium Channel Blockers - pharmacology</subject><subject>spike activity</subject><subject>Strychnine - pharmacology</subject><subject>Tetrodotoxin - pharmacology</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Vestibular Nuclei - cytology</subject><subject>Vestibular Nuclei - embryology</subject><issn>0306-4522</issn><issn>1873-7544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9v1DAQxS0EokvhK6AICW5Jx4njOBxQUfnTSq24wNnyjsetl6yz2MlKfHu83YiWG7744N-8eX6PsTccKg5cnm2qQHMcE3oKSFUNICtoKpD8CVtx1TVl1wrxlK2gAVmKtq5P2IuUNpBPK5rn7IRL2UPNxYqd35hpjmbyYyhGVzgffbgtdmaaKIbChwLvPP4s9pQmv54HE4sw40BzKu49hPSSPXNmSPRquU_Zjy-fv19cltffvl5dfLwuUfJ6Kq0C3hvlOqsQQTpw0ki0AM26Qeg6I5UwGXFUq7VDstaK1rQkELiyYJtT9uGou5vXW7JIYYpm0Lvotyb-1qPx-t-X4O_07bjXXPV93bRZ4N0iEMdfc_6P3vqENAwm0DgnzfuO9-IefH8EMWecIrm_SzjoQwF6ox8XoA8FaGh0LiAPv35s82F0STwDbxfAJDSDiyagTw-cylQvDtynI0c51L2nqJd11kfCSdvR_4-fP-iqrcw</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Shao, M.</creator><creator>Hirsch, J.C.</creator><creator>Peusner, K.D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20060101</creationdate><title>Maturation of firing pattern in chick vestibular nucleus neurons</title><author>Shao, M. ; Hirsch, J.C. ; Peusner, K.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-d8019a8f7d8cc06f0f6a6cd003b3c077a684a019fe28bfceddd45a5e4c018d0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>2-Amino-5-phosphonovalerate - pharmacology</topic><topic>6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology</topic><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Action Potentials - radiation effects</topic><topic>Animals</topic><topic>Apamin - pharmacology</topic><topic>Bicuculline - pharmacology</topic><topic>Biological and medical sciences</topic><topic>brain slice</topic><topic>Cesium - pharmacology</topic><topic>Chick Embryo</topic><topic>Chlorides - pharmacology</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Drug Combinations</topic><topic>Electric Stimulation - methods</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Excitatory Postsynaptic Potentials - drug effects</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GABA Antagonists - pharmacology</topic><topic>In Vitro Techniques</topic><topic>intrinsic membrane properties</topic><topic>Lysine - analogs & derivatives</topic><topic>Lysine - metabolism</topic><topic>Neurons - classification</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Sodium Channel Blockers - pharmacology</topic><topic>spike activity</topic><topic>Strychnine - pharmacology</topic><topic>Tetrodotoxin - pharmacology</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Vestibular Nuclei - cytology</topic><topic>Vestibular Nuclei - embryology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, M.</creatorcontrib><creatorcontrib>Hirsch, J.C.</creatorcontrib><creatorcontrib>Peusner, K.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, M.</au><au>Hirsch, J.C.</au><au>Peusner, K.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maturation of firing pattern in chick vestibular nucleus neurons</atitle><jtitle>Neuroscience</jtitle><addtitle>Neuroscience</addtitle><date>2006-01-01</date><risdate>2006</risdate><volume>141</volume><issue>2</issue><spage>711</spage><epage>726</epage><pages>711-726</pages><issn>0306-4522</issn><eissn>1873-7544</eissn><coden>NRSCDN</coden><abstract>The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibuloocular and vestibulocollic reflexes. In birds and mammals, spontaneous and stimulus-evoked firing of action potentials is essential for vestibular nucleus neurons to generate mature vestibular reflex activity. The emergence of spike-firing pattern and the underlying ion channels were studied in morphologically-identified principal cells using whole-cell patch-clamp recordings from brain slices of late-term embryos (embryonic day 16) and hatchling chickens (hatching day 1 and hatching day 5). Spontaneous spike activity emerged around the perinatal period, since at embryonic day 16 none of the principal cells generated spontaneous action potentials. However, at hatching day 1, 50% of the cells fired spontaneously (range, 3 to 32 spikes/s), which depended on synaptic transmission in most cells. By hatching day 5, 80% of the principal cells could fire action potentials spontaneously (range, 5 to 80 spikes/s), and this activity was independent of synaptic transmission and showed faster kinetics than at hatching day 1. Repetitive firing in response to depolarizing pulses appeared in the principal cells starting around embryonic day 16, when <20% of the neurons fired repetitively. However, almost 90% of the principal cells exhibited repetitive firing on depolarization at hatching day 1, and 100% by hatching day 5. From embryonic day 16 to hatching day 5, the gain for evoked spike firing increased almost 10-fold. At hatching day 5, a persistent sodium channel was essential for the generation of spontaneous spike activity, while a small conductance, calcium-dependent potassium current modulated both the spontaneous and evoked spike firing activity. Altogether, these
in vitro studies showed that during the perinatal period, the principal cells switched from displaying no spontaneous spike activity at resting membrane potential and generating one spike on depolarization to the tonic firing of spontaneous and evoked action potentials.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>16690214</pmid><doi>10.1016/j.neuroscience.2006.03.061</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-4522 |
ispartof | Neuroscience, 2006-01, Vol.141 (2), p.711-726 |
issn | 0306-4522 1873-7544 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1899235 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | 2-Amino-5-phosphonovalerate - pharmacology 6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology Action Potentials - drug effects Action Potentials - physiology Action Potentials - radiation effects Animals Apamin - pharmacology Bicuculline - pharmacology Biological and medical sciences brain slice Cesium - pharmacology Chick Embryo Chlorides - pharmacology Dose-Response Relationship, Radiation Drug Combinations Electric Stimulation - methods Excitatory Amino Acid Antagonists - pharmacology Excitatory Postsynaptic Potentials - drug effects Fundamental and applied biological sciences. Psychology GABA Antagonists - pharmacology In Vitro Techniques intrinsic membrane properties Lysine - analogs & derivatives Lysine - metabolism Neurons - classification Neurons - drug effects Neurons - physiology Sodium Channel Blockers - pharmacology spike activity Strychnine - pharmacology Tetrodotoxin - pharmacology Vertebrates: nervous system and sense organs Vestibular Nuclei - cytology Vestibular Nuclei - embryology |
title | Maturation of firing pattern in chick vestibular nucleus neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maturation%20of%20firing%20pattern%20in%20chick%20vestibular%20nucleus%20neurons&rft.jtitle=Neuroscience&rft.au=Shao,%20M.&rft.date=2006-01-01&rft.volume=141&rft.issue=2&rft.spage=711&rft.epage=726&rft.pages=711-726&rft.issn=0306-4522&rft.eissn=1873-7544&rft.coden=NRSCDN&rft_id=info:doi/10.1016/j.neuroscience.2006.03.061&rft_dat=%3Cproquest_pubme%3E19719435%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19719435&rft_id=info:pmid/16690214&rft_els_id=S0306452206004349&rfr_iscdi=true |