Heteroduplex DNA in meiotic recombination in Drosophila mei-9 mutants

Meiotic recombination gives rise to crossovers, which are required in most organisms for the faithful segregation of homologous chromosomes during meiotic cell division. Characterization of crossover-defective mutants has contributed much to our understanding of the molecular mechanism of crossover...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 2007-05, Vol.176 (1), p.63-72
Hauptverfasser: Radford, Sarah J, McMahan, Susan, Blanton, Hunter L, Sekelsky, Jeff
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue 1
container_start_page 63
container_title Genetics (Austin)
container_volume 176
creator Radford, Sarah J
McMahan, Susan
Blanton, Hunter L
Sekelsky, Jeff
description Meiotic recombination gives rise to crossovers, which are required in most organisms for the faithful segregation of homologous chromosomes during meiotic cell division. Characterization of crossover-defective mutants has contributed much to our understanding of the molecular mechanism of crossover formation. We report here a molecular analysis of recombination in a Drosophila melanogaster crossover-defective mutant, mei-9. In the absence of mei-9 activity, postmeiotic segregation associated with noncrossovers occurs at the expense of crossover products, suggesting that the underlying meiotic function for MEI-9 is in crossover formation rather than mismatch repair. In support of this, analysis of the arrangement of heteroduplex DNA in the postmeiotic segregation products reveals different patterns from those observed in Drosophila Msh6 mutants, which are mismatch-repair defective. This analysis also provides evidence that the double-strand break repair model applies to meiotic recombination in Drosophila. Our results support a model in which MEI-9 nicks Holliday junctions to generate crossovers during meiotic recombination, and, in the absence of MEI-9 activity, the double Holliday junction intermediate instead undergoes dissolution to generate noncrossover products in which heteroduplex is unrepaired.
doi_str_mv 10.1534/genetics.107.070557
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1893050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70530637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-29d5a4b6a999397574319b783b65d56ab541ca65d9859843edbe17c9b323cd323</originalsourceid><addsrcrecordid>eNpdkcFO3DAQhq2qqLuFPgESinroLYsnE9vxBWkFtFRawQXOluMY8CqxFztB8Pb1arctcBmPPN_8mpmfkGOgC2BYnz5Yb0dn0gKoWFBBGROfyBxkjWXFET6TOaXASy4QZuRrSmtKKZes-UJmIBBlBXJOLq_saGPopk1vX4qL62XhfDFYF7JyEa0JQ-u8Hl3w28JFDClsHl2vt0wpi2EatR_TETm4132y3_bvIbn7eXl7flWubn79Pl-uSlMjHctKdkzXLddSSpSCiRpBtqLBlrOOcd2yGozOuWyYbGq0XWtBGNlihabL4ZCc7XQ3UzvYzlg_Rt2rTXSDjq8qaKfeV7x7VA_hWUEjkTKaBX7sBWJ4mmwa1eCSsX2vvQ1TUvmKSDmKDH7_AK7DFH1eTlVQAyKnkCHcQSbfJUV7_28SoGrrkfrrUf4QaudR7jp5u8T_nr0p-AfHwY8M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214133601</pqid></control><display><type>article</type><title>Heteroduplex DNA in meiotic recombination in Drosophila mei-9 mutants</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Radford, Sarah J ; McMahan, Susan ; Blanton, Hunter L ; Sekelsky, Jeff</creator><creatorcontrib>Radford, Sarah J ; McMahan, Susan ; Blanton, Hunter L ; Sekelsky, Jeff</creatorcontrib><description>Meiotic recombination gives rise to crossovers, which are required in most organisms for the faithful segregation of homologous chromosomes during meiotic cell division. Characterization of crossover-defective mutants has contributed much to our understanding of the molecular mechanism of crossover formation. We report here a molecular analysis of recombination in a Drosophila melanogaster crossover-defective mutant, mei-9. In the absence of mei-9 activity, postmeiotic segregation associated with noncrossovers occurs at the expense of crossover products, suggesting that the underlying meiotic function for MEI-9 is in crossover formation rather than mismatch repair. In support of this, analysis of the arrangement of heteroduplex DNA in the postmeiotic segregation products reveals different patterns from those observed in Drosophila Msh6 mutants, which are mismatch-repair defective. This analysis also provides evidence that the double-strand break repair model applies to meiotic recombination in Drosophila. Our results support a model in which MEI-9 nicks Holliday junctions to generate crossovers during meiotic recombination, and, in the absence of MEI-9 activity, the double Holliday junction intermediate instead undergoes dissolution to generate noncrossover products in which heteroduplex is unrepaired.</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.107.070557</identifier><identifier>PMID: 17339219</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Society of America</publisher><subject>Animals ; Base Composition - genetics ; Chromosome Segregation ; Chromosomes ; Crossing Over, Genetic ; Deoxyribonucleic acid ; DNA ; DNA Repair ; Drosophila melanogaster - genetics ; Drosophila Proteins - genetics ; Genetic recombination ; Investigations ; Meiosis ; Models, Genetic ; Mutation - genetics ; Nuclear Proteins - genetics ; Nucleic Acid Heteroduplexes - genetics ; Proteins ; Yeast</subject><ispartof>Genetics (Austin), 2007-05, Vol.176 (1), p.63-72</ispartof><rights>Copyright Genetics Society of America May 2007</rights><rights>Copyright © 2007 by the Genetics Society of America 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-29d5a4b6a999397574319b783b65d56ab541ca65d9859843edbe17c9b323cd323</citedby><cites>FETCH-LOGICAL-c430t-29d5a4b6a999397574319b783b65d56ab541ca65d9859843edbe17c9b323cd323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17339219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Radford, Sarah J</creatorcontrib><creatorcontrib>McMahan, Susan</creatorcontrib><creatorcontrib>Blanton, Hunter L</creatorcontrib><creatorcontrib>Sekelsky, Jeff</creatorcontrib><title>Heteroduplex DNA in meiotic recombination in Drosophila mei-9 mutants</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Meiotic recombination gives rise to crossovers, which are required in most organisms for the faithful segregation of homologous chromosomes during meiotic cell division. Characterization of crossover-defective mutants has contributed much to our understanding of the molecular mechanism of crossover formation. We report here a molecular analysis of recombination in a Drosophila melanogaster crossover-defective mutant, mei-9. In the absence of mei-9 activity, postmeiotic segregation associated with noncrossovers occurs at the expense of crossover products, suggesting that the underlying meiotic function for MEI-9 is in crossover formation rather than mismatch repair. In support of this, analysis of the arrangement of heteroduplex DNA in the postmeiotic segregation products reveals different patterns from those observed in Drosophila Msh6 mutants, which are mismatch-repair defective. This analysis also provides evidence that the double-strand break repair model applies to meiotic recombination in Drosophila. Our results support a model in which MEI-9 nicks Holliday junctions to generate crossovers during meiotic recombination, and, in the absence of MEI-9 activity, the double Holliday junction intermediate instead undergoes dissolution to generate noncrossover products in which heteroduplex is unrepaired.</description><subject>Animals</subject><subject>Base Composition - genetics</subject><subject>Chromosome Segregation</subject><subject>Chromosomes</subject><subject>Crossing Over, Genetic</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Repair</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila Proteins - genetics</subject><subject>Genetic recombination</subject><subject>Investigations</subject><subject>Meiosis</subject><subject>Models, Genetic</subject><subject>Mutation - genetics</subject><subject>Nuclear Proteins - genetics</subject><subject>Nucleic Acid Heteroduplexes - genetics</subject><subject>Proteins</subject><subject>Yeast</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkcFO3DAQhq2qqLuFPgESinroLYsnE9vxBWkFtFRawQXOluMY8CqxFztB8Pb1arctcBmPPN_8mpmfkGOgC2BYnz5Yb0dn0gKoWFBBGROfyBxkjWXFET6TOaXASy4QZuRrSmtKKZes-UJmIBBlBXJOLq_saGPopk1vX4qL62XhfDFYF7JyEa0JQ-u8Hl3w28JFDClsHl2vt0wpi2EatR_TETm4132y3_bvIbn7eXl7flWubn79Pl-uSlMjHctKdkzXLddSSpSCiRpBtqLBlrOOcd2yGozOuWyYbGq0XWtBGNlihabL4ZCc7XQ3UzvYzlg_Rt2rTXSDjq8qaKfeV7x7VA_hWUEjkTKaBX7sBWJ4mmwa1eCSsX2vvQ1TUvmKSDmKDH7_AK7DFH1eTlVQAyKnkCHcQSbfJUV7_28SoGrrkfrrUf4QaudR7jp5u8T_nr0p-AfHwY8M</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Radford, Sarah J</creator><creator>McMahan, Susan</creator><creator>Blanton, Hunter L</creator><creator>Sekelsky, Jeff</creator><general>Genetics Society of America</general><general>Copyright © 2007 by the Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200705</creationdate><title>Heteroduplex DNA in meiotic recombination in Drosophila mei-9 mutants</title><author>Radford, Sarah J ; McMahan, Susan ; Blanton, Hunter L ; Sekelsky, Jeff</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-29d5a4b6a999397574319b783b65d56ab541ca65d9859843edbe17c9b323cd323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Base Composition - genetics</topic><topic>Chromosome Segregation</topic><topic>Chromosomes</topic><topic>Crossing Over, Genetic</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Repair</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila Proteins - genetics</topic><topic>Genetic recombination</topic><topic>Investigations</topic><topic>Meiosis</topic><topic>Models, Genetic</topic><topic>Mutation - genetics</topic><topic>Nuclear Proteins - genetics</topic><topic>Nucleic Acid Heteroduplexes - genetics</topic><topic>Proteins</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radford, Sarah J</creatorcontrib><creatorcontrib>McMahan, Susan</creatorcontrib><creatorcontrib>Blanton, Hunter L</creatorcontrib><creatorcontrib>Sekelsky, Jeff</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radford, Sarah J</au><au>McMahan, Susan</au><au>Blanton, Hunter L</au><au>Sekelsky, Jeff</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heteroduplex DNA in meiotic recombination in Drosophila mei-9 mutants</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2007-05</date><risdate>2007</risdate><volume>176</volume><issue>1</issue><spage>63</spage><epage>72</epage><pages>63-72</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>Meiotic recombination gives rise to crossovers, which are required in most organisms for the faithful segregation of homologous chromosomes during meiotic cell division. Characterization of crossover-defective mutants has contributed much to our understanding of the molecular mechanism of crossover formation. We report here a molecular analysis of recombination in a Drosophila melanogaster crossover-defective mutant, mei-9. In the absence of mei-9 activity, postmeiotic segregation associated with noncrossovers occurs at the expense of crossover products, suggesting that the underlying meiotic function for MEI-9 is in crossover formation rather than mismatch repair. In support of this, analysis of the arrangement of heteroduplex DNA in the postmeiotic segregation products reveals different patterns from those observed in Drosophila Msh6 mutants, which are mismatch-repair defective. This analysis also provides evidence that the double-strand break repair model applies to meiotic recombination in Drosophila. Our results support a model in which MEI-9 nicks Holliday junctions to generate crossovers during meiotic recombination, and, in the absence of MEI-9 activity, the double Holliday junction intermediate instead undergoes dissolution to generate noncrossover products in which heteroduplex is unrepaired.</abstract><cop>United States</cop><pub>Genetics Society of America</pub><pmid>17339219</pmid><doi>10.1534/genetics.107.070557</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-6731
ispartof Genetics (Austin), 2007-05, Vol.176 (1), p.63-72
issn 0016-6731
1943-2631
1943-2631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1893050
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animals
Base Composition - genetics
Chromosome Segregation
Chromosomes
Crossing Over, Genetic
Deoxyribonucleic acid
DNA
DNA Repair
Drosophila melanogaster - genetics
Drosophila Proteins - genetics
Genetic recombination
Investigations
Meiosis
Models, Genetic
Mutation - genetics
Nuclear Proteins - genetics
Nucleic Acid Heteroduplexes - genetics
Proteins
Yeast
title Heteroduplex DNA in meiotic recombination in Drosophila mei-9 mutants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heteroduplex%20DNA%20in%20meiotic%20recombination%20in%20Drosophila%20mei-9%20mutants&rft.jtitle=Genetics%20(Austin)&rft.au=Radford,%20Sarah%20J&rft.date=2007-05&rft.volume=176&rft.issue=1&rft.spage=63&rft.epage=72&rft.pages=63-72&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.107.070557&rft_dat=%3Cproquest_pubme%3E70530637%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214133601&rft_id=info:pmid/17339219&rfr_iscdi=true