Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time

The identification of predominant microbial taxa with specific metabolic capabilities remains one the biggest challenges in environmental microbiology, because of the limits of current metagenomic and cell culturing methods. We report results from the direct analysis of multiple genes in individual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-05, Vol.104 (21), p.9052-9057
Hauptverfasser: Stepanauskas, Ramunas, Sieracki, Michael E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9057
container_issue 21
container_start_page 9052
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Stepanauskas, Ramunas
Sieracki, Michael E
description The identification of predominant microbial taxa with specific metabolic capabilities remains one the biggest challenges in environmental microbiology, because of the limits of current metagenomic and cell culturing methods. We report results from the direct analysis of multiple genes in individual marine bacteria cells, demonstrating the potential for high-throughput metabolic assignment of yet-uncultured taxa. The protocol uses high-speed fluorescence-activated cell sorting, whole-genome multiple displacement amplification (MDA), and subsequent PCR screening. A pilot library of 11 single amplified genomes (SAGs) was constructed from Gulf of Maine bacterioplankton as proof of concept. The library consisted of five flavobacteria, one sphingobacterium, four alphaproteobacteria, and one gammaproteobacterium. Most of the SAGs, apart from alphaproteobacteria, were phylogenetically distant from existing isolates, with 88-97% identity in the 16S rRNA gene sequence. Thus, single-cell MDA provided access to the genomic material of numerically dominant but yet-uncultured taxonomic groups. Two of five flavobacteria in the SAG library contained proteorhodopsin genes, suggesting that flavobacteria are among the major carriers of this photometabolic system. The pufM and nasA genes were detected in some 100-cell MDA products but not in SAGs, demonstrating that organisms containing bacteriochlorophyll and assimilative nitrate reductase constituted
doi_str_mv 10.1073/pnas.0700496104
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1885626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25427797</jstor_id><sourcerecordid>25427797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c652t-2bb696ee7a966b3f084de8e3b483de8d4246dffb726616408d5d931282fba6233</originalsourceid><addsrcrecordid>eNp9kUuP0zAUhSMEYsrAmhVgsUAgkZnrR2xngzQaAYNUxAJGLC0ncRpXqV1sZ0T_PY5atTALVn5999x7fIriOYYLDIJebp2OFyAAWM0xsAfFAkONS85qeFgsAIgoJSPsrHgS4xoA6krC4-IMiwoIx3JR_PyqUztYt0LbYTf6lXE7pF2HNibpxo82bpB1KA0GTa6dxjQFkx91sM6gRrfJBKvfI59PrRlHpBPSKNmNeVo86vUYzbPDel7cfvr44_qmXH77_OX6alm2vCKpJE3Da26M0DXnDe1Bss5IQxsmad50eXbe9X0jCOeYM5Bd1dUUE0n6RnNC6XnxYa-7nZqN6VrjUtCj2gabh9wpr63698XZQa38ncJSVpzwLPBuLzDcK7u5Wqr5DjDnlDJ6hzP75tAs-F-TiUltbJx9a2f8FBXOJhiXdQZf3wPXfgouf4QigGktKJvVLvdQG3yMwfTH9hjUnK6a01WndHPFy7_NnvhDnBl4ewDmypMcUwSrGiqi-mkck_mdMvrq_2gmXuyJdUw-HBFSMSJEtnBU6LVXehVsVLffZ3sAQgioKvoHB_PKvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201397341</pqid></control><display><type>article</type><title>Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Stepanauskas, Ramunas ; Sieracki, Michael E</creator><creatorcontrib>Stepanauskas, Ramunas ; Sieracki, Michael E</creatorcontrib><description>The identification of predominant microbial taxa with specific metabolic capabilities remains one the biggest challenges in environmental microbiology, because of the limits of current metagenomic and cell culturing methods. We report results from the direct analysis of multiple genes in individual marine bacteria cells, demonstrating the potential for high-throughput metabolic assignment of yet-uncultured taxa. The protocol uses high-speed fluorescence-activated cell sorting, whole-genome multiple displacement amplification (MDA), and subsequent PCR screening. A pilot library of 11 single amplified genomes (SAGs) was constructed from Gulf of Maine bacterioplankton as proof of concept. The library consisted of five flavobacteria, one sphingobacterium, four alphaproteobacteria, and one gammaproteobacterium. Most of the SAGs, apart from alphaproteobacteria, were phylogenetically distant from existing isolates, with 88-97% identity in the 16S rRNA gene sequence. Thus, single-cell MDA provided access to the genomic material of numerically dominant but yet-uncultured taxonomic groups. Two of five flavobacteria in the SAG library contained proteorhodopsin genes, suggesting that flavobacteria are among the major carriers of this photometabolic system. The pufM and nasA genes were detected in some 100-cell MDA products but not in SAGs, demonstrating that organisms containing bacteriochlorophyll and assimilative nitrate reductase constituted &lt;1% of the sampled bacterioplankton. Compared with metagenomics, the power of our approach lies in the ability to detect metabolic genes in uncultured microorganisms directly, even when the metabolic and phylogenetic markers are located far apart on the chromosome.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0700496104</identifier><identifier>PMID: 17502618</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aquatic plants ; Bacteria ; Bacteria - classification ; Bacteria - cytology ; Bacteria - genetics ; Bacteria - metabolism ; Bacterial Proteins - genetics ; Bacteriology ; Bacterioplankton ; Biological Sciences ; Earth Sciences ; Flavobacteria ; Gene Amplification ; Gene Library ; Genes ; Genes, Bacterial - genetics ; Genome, Bacterial - genetics ; Genomes ; Genomics ; Libraries ; Marine ; Marine Biology ; Metabolism ; Molecular Sequence Data ; Oceanography ; Photosynthetic Reaction Center Complex Proteins - genetics ; Phylogeny ; Polymerase chain reaction ; Product category rules ; Prokaryotic cells ; Rhodopsins, Microbial - genetics ; RNA, Ribosomal - genetics ; Roseobacter ; rRNA genes ; Sciences of the Universe ; Seawater - microbiology ; Sequencing ; Sphingobacterium ; Taxonomy ; Time Factors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-05, Vol.104 (21), p.9052-9057</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 22, 2007</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c652t-2bb696ee7a966b3f084de8e3b483de8d4246dffb726616408d5d931282fba6233</citedby><cites>FETCH-LOGICAL-c652t-2bb696ee7a966b3f084de8e3b483de8d4246dffb726616408d5d931282fba6233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25427797$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25427797$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17502618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01663343$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Stepanauskas, Ramunas</creatorcontrib><creatorcontrib>Sieracki, Michael E</creatorcontrib><title>Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The identification of predominant microbial taxa with specific metabolic capabilities remains one the biggest challenges in environmental microbiology, because of the limits of current metagenomic and cell culturing methods. We report results from the direct analysis of multiple genes in individual marine bacteria cells, demonstrating the potential for high-throughput metabolic assignment of yet-uncultured taxa. The protocol uses high-speed fluorescence-activated cell sorting, whole-genome multiple displacement amplification (MDA), and subsequent PCR screening. A pilot library of 11 single amplified genomes (SAGs) was constructed from Gulf of Maine bacterioplankton as proof of concept. The library consisted of five flavobacteria, one sphingobacterium, four alphaproteobacteria, and one gammaproteobacterium. Most of the SAGs, apart from alphaproteobacteria, were phylogenetically distant from existing isolates, with 88-97% identity in the 16S rRNA gene sequence. Thus, single-cell MDA provided access to the genomic material of numerically dominant but yet-uncultured taxonomic groups. Two of five flavobacteria in the SAG library contained proteorhodopsin genes, suggesting that flavobacteria are among the major carriers of this photometabolic system. The pufM and nasA genes were detected in some 100-cell MDA products but not in SAGs, demonstrating that organisms containing bacteriochlorophyll and assimilative nitrate reductase constituted &lt;1% of the sampled bacterioplankton. Compared with metagenomics, the power of our approach lies in the ability to detect metabolic genes in uncultured microorganisms directly, even when the metabolic and phylogenetic markers are located far apart on the chromosome.</description><subject>Aquatic plants</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - cytology</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacteriology</subject><subject>Bacterioplankton</subject><subject>Biological Sciences</subject><subject>Earth Sciences</subject><subject>Flavobacteria</subject><subject>Gene Amplification</subject><subject>Gene Library</subject><subject>Genes</subject><subject>Genes, Bacterial - genetics</subject><subject>Genome, Bacterial - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Libraries</subject><subject>Marine</subject><subject>Marine Biology</subject><subject>Metabolism</subject><subject>Molecular Sequence Data</subject><subject>Oceanography</subject><subject>Photosynthetic Reaction Center Complex Proteins - genetics</subject><subject>Phylogeny</subject><subject>Polymerase chain reaction</subject><subject>Product category rules</subject><subject>Prokaryotic cells</subject><subject>Rhodopsins, Microbial - genetics</subject><subject>RNA, Ribosomal - genetics</subject><subject>Roseobacter</subject><subject>rRNA genes</subject><subject>Sciences of the Universe</subject><subject>Seawater - microbiology</subject><subject>Sequencing</subject><subject>Sphingobacterium</subject><subject>Taxonomy</subject><subject>Time Factors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUuP0zAUhSMEYsrAmhVgsUAgkZnrR2xngzQaAYNUxAJGLC0ncRpXqV1sZ0T_PY5atTALVn5999x7fIriOYYLDIJebp2OFyAAWM0xsAfFAkONS85qeFgsAIgoJSPsrHgS4xoA6krC4-IMiwoIx3JR_PyqUztYt0LbYTf6lXE7pF2HNibpxo82bpB1KA0GTa6dxjQFkx91sM6gRrfJBKvfI59PrRlHpBPSKNmNeVo86vUYzbPDel7cfvr44_qmXH77_OX6alm2vCKpJE3Da26M0DXnDe1Bss5IQxsmad50eXbe9X0jCOeYM5Bd1dUUE0n6RnNC6XnxYa-7nZqN6VrjUtCj2gabh9wpr63698XZQa38ncJSVpzwLPBuLzDcK7u5Wqr5DjDnlDJ6hzP75tAs-F-TiUltbJx9a2f8FBXOJhiXdQZf3wPXfgouf4QigGktKJvVLvdQG3yMwfTH9hjUnK6a01WndHPFy7_NnvhDnBl4ewDmypMcUwSrGiqi-mkck_mdMvrq_2gmXuyJdUw-HBFSMSJEtnBU6LVXehVsVLffZ3sAQgioKvoHB_PKvg</recordid><startdate>20070522</startdate><enddate>20070522</enddate><creator>Stepanauskas, Ramunas</creator><creator>Sieracki, Michael E</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7T7</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20070522</creationdate><title>Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time</title><author>Stepanauskas, Ramunas ; Sieracki, Michael E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c652t-2bb696ee7a966b3f084de8e3b483de8d4246dffb726616408d5d931282fba6233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aquatic plants</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - cytology</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacteriology</topic><topic>Bacterioplankton</topic><topic>Biological Sciences</topic><topic>Earth Sciences</topic><topic>Flavobacteria</topic><topic>Gene Amplification</topic><topic>Gene Library</topic><topic>Genes</topic><topic>Genes, Bacterial - genetics</topic><topic>Genome, Bacterial - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Libraries</topic><topic>Marine</topic><topic>Marine Biology</topic><topic>Metabolism</topic><topic>Molecular Sequence Data</topic><topic>Oceanography</topic><topic>Photosynthetic Reaction Center Complex Proteins - genetics</topic><topic>Phylogeny</topic><topic>Polymerase chain reaction</topic><topic>Product category rules</topic><topic>Prokaryotic cells</topic><topic>Rhodopsins, Microbial - genetics</topic><topic>RNA, Ribosomal - genetics</topic><topic>Roseobacter</topic><topic>rRNA genes</topic><topic>Sciences of the Universe</topic><topic>Seawater - microbiology</topic><topic>Sequencing</topic><topic>Sphingobacterium</topic><topic>Taxonomy</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stepanauskas, Ramunas</creatorcontrib><creatorcontrib>Sieracki, Michael E</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stepanauskas, Ramunas</au><au>Sieracki, Michael E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-05-22</date><risdate>2007</risdate><volume>104</volume><issue>21</issue><spage>9052</spage><epage>9057</epage><pages>9052-9057</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The identification of predominant microbial taxa with specific metabolic capabilities remains one the biggest challenges in environmental microbiology, because of the limits of current metagenomic and cell culturing methods. We report results from the direct analysis of multiple genes in individual marine bacteria cells, demonstrating the potential for high-throughput metabolic assignment of yet-uncultured taxa. The protocol uses high-speed fluorescence-activated cell sorting, whole-genome multiple displacement amplification (MDA), and subsequent PCR screening. A pilot library of 11 single amplified genomes (SAGs) was constructed from Gulf of Maine bacterioplankton as proof of concept. The library consisted of five flavobacteria, one sphingobacterium, four alphaproteobacteria, and one gammaproteobacterium. Most of the SAGs, apart from alphaproteobacteria, were phylogenetically distant from existing isolates, with 88-97% identity in the 16S rRNA gene sequence. Thus, single-cell MDA provided access to the genomic material of numerically dominant but yet-uncultured taxonomic groups. Two of five flavobacteria in the SAG library contained proteorhodopsin genes, suggesting that flavobacteria are among the major carriers of this photometabolic system. The pufM and nasA genes were detected in some 100-cell MDA products but not in SAGs, demonstrating that organisms containing bacteriochlorophyll and assimilative nitrate reductase constituted &lt;1% of the sampled bacterioplankton. Compared with metagenomics, the power of our approach lies in the ability to detect metabolic genes in uncultured microorganisms directly, even when the metabolic and phylogenetic markers are located far apart on the chromosome.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17502618</pmid><doi>10.1073/pnas.0700496104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-05, Vol.104 (21), p.9052-9057
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1885626
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Aquatic plants
Bacteria
Bacteria - classification
Bacteria - cytology
Bacteria - genetics
Bacteria - metabolism
Bacterial Proteins - genetics
Bacteriology
Bacterioplankton
Biological Sciences
Earth Sciences
Flavobacteria
Gene Amplification
Gene Library
Genes
Genes, Bacterial - genetics
Genome, Bacterial - genetics
Genomes
Genomics
Libraries
Marine
Marine Biology
Metabolism
Molecular Sequence Data
Oceanography
Photosynthetic Reaction Center Complex Proteins - genetics
Phylogeny
Polymerase chain reaction
Product category rules
Prokaryotic cells
Rhodopsins, Microbial - genetics
RNA, Ribosomal - genetics
Roseobacter
rRNA genes
Sciences of the Universe
Seawater - microbiology
Sequencing
Sphingobacterium
Taxonomy
Time Factors
title Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A42%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matching%20phylogeny%20and%20metabolism%20in%20the%20uncultured%20marine%20bacteria,%20one%20cell%20at%20a%20time&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Stepanauskas,%20Ramunas&rft.date=2007-05-22&rft.volume=104&rft.issue=21&rft.spage=9052&rft.epage=9057&rft.pages=9052-9057&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0700496104&rft_dat=%3Cjstor_pubme%3E25427797%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201397341&rft_id=info:pmid/17502618&rft_jstor_id=25427797&rfr_iscdi=true