Tumour necrosis factor α signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice

Background: While tumour necrosis factor α (TNF-α) appears to be associated with the development of non-alcoholic steatohepatitis (NASH), its precise role in the pathogenesis of NASH is not well understood. Methods: Male mice deficient in both TNF receptors 1 (TNFR1) and 2 (TNFR2) (TNFRDKO mice) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gut 2006-03, Vol.55 (3), p.415-424
Hauptverfasser: Tomita, K, Tamiya, G, Ando, S, Ohsumi, K, Chiyo, T, Mizutani, A, Kitamura, N, Toda, K, Kaneko, T, Horie, Y, Han, J-Y, Kato, S, Shimoda, M, Oike, Y, Tomizawa, M, Makino, S, Ohkura, T, Saito, H, Kumagai, N, Nagata, H, Ishii, H, Hibi, T
Format: Artikel
Sprache:eng
Schlagworte:
ALT
ASH
COX
FAS
FBS
HSD
LPS
mAb
MCD
PHB
SCD
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 424
container_issue 3
container_start_page 415
container_title Gut
container_volume 55
creator Tomita, K
Tamiya, G
Ando, S
Ohsumi, K
Chiyo, T
Mizutani, A
Kitamura, N
Toda, K
Kaneko, T
Horie, Y
Han, J-Y
Kato, S
Shimoda, M
Oike, Y
Tomizawa, M
Makino, S
Ohkura, T
Saito, H
Kumagai, N
Nagata, H
Ishii, H
Hibi, T
description Background: While tumour necrosis factor α (TNF-α) appears to be associated with the development of non-alcoholic steatohepatitis (NASH), its precise role in the pathogenesis of NASH is not well understood. Methods: Male mice deficient in both TNF receptors 1 (TNFR1) and 2 (TNFR2) (TNFRDKO mice) and wild-type mice were fed a methionine and choline deficient (MCD) diet or a control diet for eight weeks, maintaining isoenergetic intake. Results: MCD dietary feeding of TNFRDKO mice for eight weeks resulted in attenuated liver steatosis and fibrosis compared with control wild-type mice. In the liver, the number of activated hepatic Kupffer cells recruited was significantly decreased in TNFRDKO mice after MCD dietary feeding. In addition, hepatic induction of TNF-α, vascular cell adhesion molecule 1, and intracellular adhesion molecule 1 was significantly suppressed in TNFRDKO mice. While in control animals MCD dietary feeding dramatically increased mRNA expression of tissue inhibitor of metalloproteinase 1 (TIMP-1) in both whole liver and hepatic stellate cells, concomitant with enhanced activation of hepatic stellate cells, both factors were significantly lower in TNFRDKO mice. In primary cultures, TNF-α administration enhanced TIMP-1 mRNA expression in activated hepatic stellate cells and suppressed apoptotic induction in activated hepatic stellate cells. Inhibition of TNF induced TIMP-1 upregulation by TIMP-1 specific siRNA reversed the apoptotic suppression seen in hepatic stellate cells. Conclusions: Enhancement of the TNF-α/TNFR mediated signalling pathway via activation of Kupffer cells in an autocrine or paracrine manner may be critically involved in the pathogenesis of liver fibrosis in this NASH animal model.
doi_str_mv 10.1136/gut.2005.071118
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1856073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67652378</sourcerecordid><originalsourceid>FETCH-LOGICAL-b367t-4658d0a856460003115d7b809971ecdc9a747dfc50043444c4dc4b3b750014f23</originalsourceid><addsrcrecordid>eNpVksFu1DAURSMEotPCmh3yBhaVMtixYzsbpDKigKgAiYK6sxzHybg4drCdEf0WvoIf4ZvwKEMLK0t-593r93yL4gmCa4QwfTHMaV1BWK8hQwjxe8UKEcpLXHF-v1hBiFhZM9IcFccxXkMIOW_Qw-IIUcQIrdmq-Hk5j34OwGkVfDQR9FIlH8DvXyCawUlrjRtA2gY_D1uQa2Ynk_EO-B68n6e-1wEobW0Ek5U3EUgHdIzaJSMtCN5qYBywZpex3rSLRW513pXSKr_11igQk5bJb_WUpVMGcstolH5UPOiljfrx4Twpvpy_vty8LS8-vnm3ObsoW0xZKvMgvIOS15TQPCJGqO5Yy2HTMKRVpxrJCOt6VUNIMCFEkU6RFrcsXyDSV_ikeLnoTnM76k7l1wdpxRTMKMON8NKI_yvObMXgdwJlT8hwFnh-EAj--6xjEqOJ-61Ip_0cBWW0rjDjGXz6r9Otxd__yMCzAyCjkrYP0ikT7zhGeJ65yVy5cCbv7sdtXYZv2QyzWnz4uhFX57R6Ra8-ic-ZP134dry-U4NiHyKRQyT2IRJLiPAflGG7Kw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67652378</pqid></control><display><type>article</type><title>Tumour necrosis factor α signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice</title><source>MEDLINE</source><source>BMJ Journals - NESLi2</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Tomita, K ; Tamiya, G ; Ando, S ; Ohsumi, K ; Chiyo, T ; Mizutani, A ; Kitamura, N ; Toda, K ; Kaneko, T ; Horie, Y ; Han, J-Y ; Kato, S ; Shimoda, M ; Oike, Y ; Tomizawa, M ; Makino, S ; Ohkura, T ; Saito, H ; Kumagai, N ; Nagata, H ; Ishii, H ; Hibi, T</creator><creatorcontrib>Tomita, K ; Tamiya, G ; Ando, S ; Ohsumi, K ; Chiyo, T ; Mizutani, A ; Kitamura, N ; Toda, K ; Kaneko, T ; Horie, Y ; Han, J-Y ; Kato, S ; Shimoda, M ; Oike, Y ; Tomizawa, M ; Makino, S ; Ohkura, T ; Saito, H ; Kumagai, N ; Nagata, H ; Ishii, H ; Hibi, T</creatorcontrib><description>Background: While tumour necrosis factor α (TNF-α) appears to be associated with the development of non-alcoholic steatohepatitis (NASH), its precise role in the pathogenesis of NASH is not well understood. Methods: Male mice deficient in both TNF receptors 1 (TNFR1) and 2 (TNFR2) (TNFRDKO mice) and wild-type mice were fed a methionine and choline deficient (MCD) diet or a control diet for eight weeks, maintaining isoenergetic intake. Results: MCD dietary feeding of TNFRDKO mice for eight weeks resulted in attenuated liver steatosis and fibrosis compared with control wild-type mice. In the liver, the number of activated hepatic Kupffer cells recruited was significantly decreased in TNFRDKO mice after MCD dietary feeding. In addition, hepatic induction of TNF-α, vascular cell adhesion molecule 1, and intracellular adhesion molecule 1 was significantly suppressed in TNFRDKO mice. While in control animals MCD dietary feeding dramatically increased mRNA expression of tissue inhibitor of metalloproteinase 1 (TIMP-1) in both whole liver and hepatic stellate cells, concomitant with enhanced activation of hepatic stellate cells, both factors were significantly lower in TNFRDKO mice. In primary cultures, TNF-α administration enhanced TIMP-1 mRNA expression in activated hepatic stellate cells and suppressed apoptotic induction in activated hepatic stellate cells. Inhibition of TNF induced TIMP-1 upregulation by TIMP-1 specific siRNA reversed the apoptotic suppression seen in hepatic stellate cells. Conclusions: Enhancement of the TNF-α/TNFR mediated signalling pathway via activation of Kupffer cells in an autocrine or paracrine manner may be critically involved in the pathogenesis of liver fibrosis in this NASH animal model.</description><identifier>ISSN: 0017-5749</identifier><identifier>EISSN: 1468-3288</identifier><identifier>DOI: 10.1136/gut.2005.071118</identifier><identifier>PMID: 16174657</identifier><identifier>CODEN: GUTTAK</identifier><language>eng</language><publisher>London: BMJ Publishing Group Ltd and British Society of Gastroenterology</publisher><subject>alanine aminotransferase ; alcoholic steatohepatitis ; ALT ; Animals ; Apoptosis ; ASH ; Biological and medical sciences ; Cell Adhesion Molecules - biosynthesis ; Choline Deficiency - complications ; COX ; cytochrome oxidase subunit ; Eagle’s minimum essential medium ; EMEM ; FAS ; fatty acid synthase ; Fatty Liver - complications ; Fatty Liver - metabolism ; Fatty Liver - pathology ; FBS ; fetal bovine serum ; Gastroenterology. Liver. Pancreas. Abdomen ; Gene Expression Regulation ; HSD ; hydroxysteroid dehydrogenase ; ICAM ; intracellular adhesion molecule ; kupffer cell ; Kupffer Cells - metabolism ; lipopolysaccharide ; Liver Cirrhosis, Experimental - etiology ; Liver Cirrhosis, Experimental - metabolism ; Liver Cirrhosis, Experimental - pathology ; Liver Fibrosis ; Liver. Biliary tract. Portal circulation. Exocrine pancreas ; LPS ; mAb ; Male ; MCD ; Medical sciences ; Methionine - deficiency ; methionine and choline deficient ; Mice ; mice deficient in both TNFR1 and TNFR2 ; Mice, Knockout ; microsomal triglyceride transfer protein ; Mitochondria, Liver - physiology ; monoclonal antibody ; MTTP ; Mutation ; NASH ; non-alcoholic steatohepatitis ; Other diseases. Semiology ; PHB ; prohibitin ; Receptors, Tumor Necrosis Factor, Type I - deficiency ; Receptors, Tumor Necrosis Factor, Type I - genetics ; Receptors, Tumor Necrosis Factor, Type I - physiology ; Receptors, Tumor Necrosis Factor, Type II - deficiency ; Receptors, Tumor Necrosis Factor, Type II - genetics ; Receptors, Tumor Necrosis Factor, Type II - physiology ; Reverse Transcriptase Polymerase Chain Reaction - methods ; RNA, Messenger - genetics ; SCD ; Signal Transduction ; SREBP ; stearoyl-CoA desaturase ; sterol regulatory response element binding protein ; TGF-β ; TIMP ; tissue inhibitor of metalloproteinase ; tissue inhibitor of metalloproteinase 1 ; Tissue Inhibitor of Metalloproteinase-1 - biosynthesis ; Tissue Inhibitor of Metalloproteinase-1 - genetics ; TNF-α ; TNFR ; TNFRDKO mice ; transforming growth factor β ; triglyceride ; Tumor Necrosis Factor-alpha - biosynthesis ; Tumor Necrosis Factor-alpha - physiology ; tumour necrosis factor receptor ; tumour necrosis factor α ; vascular cell adhesion molecule ; VCAM</subject><ispartof>Gut, 2006-03, Vol.55 (3), p.415-424</ispartof><rights>Copyright 2006 by Gut</rights><rights>2006 INIST-CNRS</rights><rights>Copyright © 2006 BMJ Publishing Group &amp; British Society of Gastroenterology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://gut.bmj.com/content/55/3/415.full.pdf$$EPDF$$P50$$Gbmj$$H</linktopdf><linktohtml>$$Uhttp://gut.bmj.com/content/55/3/415.full$$EHTML$$P50$$Gbmj$$H</linktohtml><link.rule.ids>114,115,230,314,723,776,780,881,23550,27901,27902,53766,53768,77343,77374</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17483679$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16174657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tomita, K</creatorcontrib><creatorcontrib>Tamiya, G</creatorcontrib><creatorcontrib>Ando, S</creatorcontrib><creatorcontrib>Ohsumi, K</creatorcontrib><creatorcontrib>Chiyo, T</creatorcontrib><creatorcontrib>Mizutani, A</creatorcontrib><creatorcontrib>Kitamura, N</creatorcontrib><creatorcontrib>Toda, K</creatorcontrib><creatorcontrib>Kaneko, T</creatorcontrib><creatorcontrib>Horie, Y</creatorcontrib><creatorcontrib>Han, J-Y</creatorcontrib><creatorcontrib>Kato, S</creatorcontrib><creatorcontrib>Shimoda, M</creatorcontrib><creatorcontrib>Oike, Y</creatorcontrib><creatorcontrib>Tomizawa, M</creatorcontrib><creatorcontrib>Makino, S</creatorcontrib><creatorcontrib>Ohkura, T</creatorcontrib><creatorcontrib>Saito, H</creatorcontrib><creatorcontrib>Kumagai, N</creatorcontrib><creatorcontrib>Nagata, H</creatorcontrib><creatorcontrib>Ishii, H</creatorcontrib><creatorcontrib>Hibi, T</creatorcontrib><title>Tumour necrosis factor α signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice</title><title>Gut</title><addtitle>Gut</addtitle><description>Background: While tumour necrosis factor α (TNF-α) appears to be associated with the development of non-alcoholic steatohepatitis (NASH), its precise role in the pathogenesis of NASH is not well understood. Methods: Male mice deficient in both TNF receptors 1 (TNFR1) and 2 (TNFR2) (TNFRDKO mice) and wild-type mice were fed a methionine and choline deficient (MCD) diet or a control diet for eight weeks, maintaining isoenergetic intake. Results: MCD dietary feeding of TNFRDKO mice for eight weeks resulted in attenuated liver steatosis and fibrosis compared with control wild-type mice. In the liver, the number of activated hepatic Kupffer cells recruited was significantly decreased in TNFRDKO mice after MCD dietary feeding. In addition, hepatic induction of TNF-α, vascular cell adhesion molecule 1, and intracellular adhesion molecule 1 was significantly suppressed in TNFRDKO mice. While in control animals MCD dietary feeding dramatically increased mRNA expression of tissue inhibitor of metalloproteinase 1 (TIMP-1) in both whole liver and hepatic stellate cells, concomitant with enhanced activation of hepatic stellate cells, both factors were significantly lower in TNFRDKO mice. In primary cultures, TNF-α administration enhanced TIMP-1 mRNA expression in activated hepatic stellate cells and suppressed apoptotic induction in activated hepatic stellate cells. Inhibition of TNF induced TIMP-1 upregulation by TIMP-1 specific siRNA reversed the apoptotic suppression seen in hepatic stellate cells. Conclusions: Enhancement of the TNF-α/TNFR mediated signalling pathway via activation of Kupffer cells in an autocrine or paracrine manner may be critically involved in the pathogenesis of liver fibrosis in this NASH animal model.</description><subject>alanine aminotransferase</subject><subject>alcoholic steatohepatitis</subject><subject>ALT</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>ASH</subject><subject>Biological and medical sciences</subject><subject>Cell Adhesion Molecules - biosynthesis</subject><subject>Choline Deficiency - complications</subject><subject>COX</subject><subject>cytochrome oxidase subunit</subject><subject>Eagle’s minimum essential medium</subject><subject>EMEM</subject><subject>FAS</subject><subject>fatty acid synthase</subject><subject>Fatty Liver - complications</subject><subject>Fatty Liver - metabolism</subject><subject>Fatty Liver - pathology</subject><subject>FBS</subject><subject>fetal bovine serum</subject><subject>Gastroenterology. Liver. Pancreas. Abdomen</subject><subject>Gene Expression Regulation</subject><subject>HSD</subject><subject>hydroxysteroid dehydrogenase</subject><subject>ICAM</subject><subject>intracellular adhesion molecule</subject><subject>kupffer cell</subject><subject>Kupffer Cells - metabolism</subject><subject>lipopolysaccharide</subject><subject>Liver Cirrhosis, Experimental - etiology</subject><subject>Liver Cirrhosis, Experimental - metabolism</subject><subject>Liver Cirrhosis, Experimental - pathology</subject><subject>Liver Fibrosis</subject><subject>Liver. Biliary tract. Portal circulation. Exocrine pancreas</subject><subject>LPS</subject><subject>mAb</subject><subject>Male</subject><subject>MCD</subject><subject>Medical sciences</subject><subject>Methionine - deficiency</subject><subject>methionine and choline deficient</subject><subject>Mice</subject><subject>mice deficient in both TNFR1 and TNFR2</subject><subject>Mice, Knockout</subject><subject>microsomal triglyceride transfer protein</subject><subject>Mitochondria, Liver - physiology</subject><subject>monoclonal antibody</subject><subject>MTTP</subject><subject>Mutation</subject><subject>NASH</subject><subject>non-alcoholic steatohepatitis</subject><subject>Other diseases. Semiology</subject><subject>PHB</subject><subject>prohibitin</subject><subject>Receptors, Tumor Necrosis Factor, Type I - deficiency</subject><subject>Receptors, Tumor Necrosis Factor, Type I - genetics</subject><subject>Receptors, Tumor Necrosis Factor, Type I - physiology</subject><subject>Receptors, Tumor Necrosis Factor, Type II - deficiency</subject><subject>Receptors, Tumor Necrosis Factor, Type II - genetics</subject><subject>Receptors, Tumor Necrosis Factor, Type II - physiology</subject><subject>Reverse Transcriptase Polymerase Chain Reaction - methods</subject><subject>RNA, Messenger - genetics</subject><subject>SCD</subject><subject>Signal Transduction</subject><subject>SREBP</subject><subject>stearoyl-CoA desaturase</subject><subject>sterol regulatory response element binding protein</subject><subject>TGF-β</subject><subject>TIMP</subject><subject>tissue inhibitor of metalloproteinase</subject><subject>tissue inhibitor of metalloproteinase 1</subject><subject>Tissue Inhibitor of Metalloproteinase-1 - biosynthesis</subject><subject>Tissue Inhibitor of Metalloproteinase-1 - genetics</subject><subject>TNF-α</subject><subject>TNFR</subject><subject>TNFRDKO mice</subject><subject>transforming growth factor β</subject><subject>triglyceride</subject><subject>Tumor Necrosis Factor-alpha - biosynthesis</subject><subject>Tumor Necrosis Factor-alpha - physiology</subject><subject>tumour necrosis factor receptor</subject><subject>tumour necrosis factor α</subject><subject>vascular cell adhesion molecule</subject><subject>VCAM</subject><issn>0017-5749</issn><issn>1468-3288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVksFu1DAURSMEotPCmh3yBhaVMtixYzsbpDKigKgAiYK6sxzHybg4drCdEf0WvoIf4ZvwKEMLK0t-593r93yL4gmCa4QwfTHMaV1BWK8hQwjxe8UKEcpLXHF-v1hBiFhZM9IcFccxXkMIOW_Qw-IIUcQIrdmq-Hk5j34OwGkVfDQR9FIlH8DvXyCawUlrjRtA2gY_D1uQa2Ynk_EO-B68n6e-1wEobW0Ek5U3EUgHdIzaJSMtCN5qYBywZpex3rSLRW513pXSKr_11igQk5bJb_WUpVMGcstolH5UPOiljfrx4Twpvpy_vty8LS8-vnm3ObsoW0xZKvMgvIOS15TQPCJGqO5Yy2HTMKRVpxrJCOt6VUNIMCFEkU6RFrcsXyDSV_ikeLnoTnM76k7l1wdpxRTMKMON8NKI_yvObMXgdwJlT8hwFnh-EAj--6xjEqOJ-61Ip_0cBWW0rjDjGXz6r9Otxd__yMCzAyCjkrYP0ikT7zhGeJ65yVy5cCbv7sdtXYZv2QyzWnz4uhFX57R6Ra8-ic-ZP134dry-U4NiHyKRQyT2IRJLiPAflGG7Kw</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Tomita, K</creator><creator>Tamiya, G</creator><creator>Ando, S</creator><creator>Ohsumi, K</creator><creator>Chiyo, T</creator><creator>Mizutani, A</creator><creator>Kitamura, N</creator><creator>Toda, K</creator><creator>Kaneko, T</creator><creator>Horie, Y</creator><creator>Han, J-Y</creator><creator>Kato, S</creator><creator>Shimoda, M</creator><creator>Oike, Y</creator><creator>Tomizawa, M</creator><creator>Makino, S</creator><creator>Ohkura, T</creator><creator>Saito, H</creator><creator>Kumagai, N</creator><creator>Nagata, H</creator><creator>Ishii, H</creator><creator>Hibi, T</creator><general>BMJ Publishing Group Ltd and British Society of Gastroenterology</general><general>BMJ</general><general>BMJ Group</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060301</creationdate><title>Tumour necrosis factor α signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice</title><author>Tomita, K ; Tamiya, G ; Ando, S ; Ohsumi, K ; Chiyo, T ; Mizutani, A ; Kitamura, N ; Toda, K ; Kaneko, T ; Horie, Y ; Han, J-Y ; Kato, S ; Shimoda, M ; Oike, Y ; Tomizawa, M ; Makino, S ; Ohkura, T ; Saito, H ; Kumagai, N ; Nagata, H ; Ishii, H ; Hibi, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b367t-4658d0a856460003115d7b809971ecdc9a747dfc50043444c4dc4b3b750014f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>alanine aminotransferase</topic><topic>alcoholic steatohepatitis</topic><topic>ALT</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>ASH</topic><topic>Biological and medical sciences</topic><topic>Cell Adhesion Molecules - biosynthesis</topic><topic>Choline Deficiency - complications</topic><topic>COX</topic><topic>cytochrome oxidase subunit</topic><topic>Eagle’s minimum essential medium</topic><topic>EMEM</topic><topic>FAS</topic><topic>fatty acid synthase</topic><topic>Fatty Liver - complications</topic><topic>Fatty Liver - metabolism</topic><topic>Fatty Liver - pathology</topic><topic>FBS</topic><topic>fetal bovine serum</topic><topic>Gastroenterology. Liver. Pancreas. Abdomen</topic><topic>Gene Expression Regulation</topic><topic>HSD</topic><topic>hydroxysteroid dehydrogenase</topic><topic>ICAM</topic><topic>intracellular adhesion molecule</topic><topic>kupffer cell</topic><topic>Kupffer Cells - metabolism</topic><topic>lipopolysaccharide</topic><topic>Liver Cirrhosis, Experimental - etiology</topic><topic>Liver Cirrhosis, Experimental - metabolism</topic><topic>Liver Cirrhosis, Experimental - pathology</topic><topic>Liver Fibrosis</topic><topic>Liver. Biliary tract. Portal circulation. Exocrine pancreas</topic><topic>LPS</topic><topic>mAb</topic><topic>Male</topic><topic>MCD</topic><topic>Medical sciences</topic><topic>Methionine - deficiency</topic><topic>methionine and choline deficient</topic><topic>Mice</topic><topic>mice deficient in both TNFR1 and TNFR2</topic><topic>Mice, Knockout</topic><topic>microsomal triglyceride transfer protein</topic><topic>Mitochondria, Liver - physiology</topic><topic>monoclonal antibody</topic><topic>MTTP</topic><topic>Mutation</topic><topic>NASH</topic><topic>non-alcoholic steatohepatitis</topic><topic>Other diseases. Semiology</topic><topic>PHB</topic><topic>prohibitin</topic><topic>Receptors, Tumor Necrosis Factor, Type I - deficiency</topic><topic>Receptors, Tumor Necrosis Factor, Type I - genetics</topic><topic>Receptors, Tumor Necrosis Factor, Type I - physiology</topic><topic>Receptors, Tumor Necrosis Factor, Type II - deficiency</topic><topic>Receptors, Tumor Necrosis Factor, Type II - genetics</topic><topic>Receptors, Tumor Necrosis Factor, Type II - physiology</topic><topic>Reverse Transcriptase Polymerase Chain Reaction - methods</topic><topic>RNA, Messenger - genetics</topic><topic>SCD</topic><topic>Signal Transduction</topic><topic>SREBP</topic><topic>stearoyl-CoA desaturase</topic><topic>sterol regulatory response element binding protein</topic><topic>TGF-β</topic><topic>TIMP</topic><topic>tissue inhibitor of metalloproteinase</topic><topic>tissue inhibitor of metalloproteinase 1</topic><topic>Tissue Inhibitor of Metalloproteinase-1 - biosynthesis</topic><topic>Tissue Inhibitor of Metalloproteinase-1 - genetics</topic><topic>TNF-α</topic><topic>TNFR</topic><topic>TNFRDKO mice</topic><topic>transforming growth factor β</topic><topic>triglyceride</topic><topic>Tumor Necrosis Factor-alpha - biosynthesis</topic><topic>Tumor Necrosis Factor-alpha - physiology</topic><topic>tumour necrosis factor receptor</topic><topic>tumour necrosis factor α</topic><topic>vascular cell adhesion molecule</topic><topic>VCAM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tomita, K</creatorcontrib><creatorcontrib>Tamiya, G</creatorcontrib><creatorcontrib>Ando, S</creatorcontrib><creatorcontrib>Ohsumi, K</creatorcontrib><creatorcontrib>Chiyo, T</creatorcontrib><creatorcontrib>Mizutani, A</creatorcontrib><creatorcontrib>Kitamura, N</creatorcontrib><creatorcontrib>Toda, K</creatorcontrib><creatorcontrib>Kaneko, T</creatorcontrib><creatorcontrib>Horie, Y</creatorcontrib><creatorcontrib>Han, J-Y</creatorcontrib><creatorcontrib>Kato, S</creatorcontrib><creatorcontrib>Shimoda, M</creatorcontrib><creatorcontrib>Oike, Y</creatorcontrib><creatorcontrib>Tomizawa, M</creatorcontrib><creatorcontrib>Makino, S</creatorcontrib><creatorcontrib>Ohkura, T</creatorcontrib><creatorcontrib>Saito, H</creatorcontrib><creatorcontrib>Kumagai, N</creatorcontrib><creatorcontrib>Nagata, H</creatorcontrib><creatorcontrib>Ishii, H</creatorcontrib><creatorcontrib>Hibi, T</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gut</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tomita, K</au><au>Tamiya, G</au><au>Ando, S</au><au>Ohsumi, K</au><au>Chiyo, T</au><au>Mizutani, A</au><au>Kitamura, N</au><au>Toda, K</au><au>Kaneko, T</au><au>Horie, Y</au><au>Han, J-Y</au><au>Kato, S</au><au>Shimoda, M</au><au>Oike, Y</au><au>Tomizawa, M</au><au>Makino, S</au><au>Ohkura, T</au><au>Saito, H</au><au>Kumagai, N</au><au>Nagata, H</au><au>Ishii, H</au><au>Hibi, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tumour necrosis factor α signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice</atitle><jtitle>Gut</jtitle><addtitle>Gut</addtitle><date>2006-03-01</date><risdate>2006</risdate><volume>55</volume><issue>3</issue><spage>415</spage><epage>424</epage><pages>415-424</pages><issn>0017-5749</issn><eissn>1468-3288</eissn><coden>GUTTAK</coden><abstract>Background: While tumour necrosis factor α (TNF-α) appears to be associated with the development of non-alcoholic steatohepatitis (NASH), its precise role in the pathogenesis of NASH is not well understood. Methods: Male mice deficient in both TNF receptors 1 (TNFR1) and 2 (TNFR2) (TNFRDKO mice) and wild-type mice were fed a methionine and choline deficient (MCD) diet or a control diet for eight weeks, maintaining isoenergetic intake. Results: MCD dietary feeding of TNFRDKO mice for eight weeks resulted in attenuated liver steatosis and fibrosis compared with control wild-type mice. In the liver, the number of activated hepatic Kupffer cells recruited was significantly decreased in TNFRDKO mice after MCD dietary feeding. In addition, hepatic induction of TNF-α, vascular cell adhesion molecule 1, and intracellular adhesion molecule 1 was significantly suppressed in TNFRDKO mice. While in control animals MCD dietary feeding dramatically increased mRNA expression of tissue inhibitor of metalloproteinase 1 (TIMP-1) in both whole liver and hepatic stellate cells, concomitant with enhanced activation of hepatic stellate cells, both factors were significantly lower in TNFRDKO mice. In primary cultures, TNF-α administration enhanced TIMP-1 mRNA expression in activated hepatic stellate cells and suppressed apoptotic induction in activated hepatic stellate cells. Inhibition of TNF induced TIMP-1 upregulation by TIMP-1 specific siRNA reversed the apoptotic suppression seen in hepatic stellate cells. Conclusions: Enhancement of the TNF-α/TNFR mediated signalling pathway via activation of Kupffer cells in an autocrine or paracrine manner may be critically involved in the pathogenesis of liver fibrosis in this NASH animal model.</abstract><cop>London</cop><pub>BMJ Publishing Group Ltd and British Society of Gastroenterology</pub><pmid>16174657</pmid><doi>10.1136/gut.2005.071118</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-5749
ispartof Gut, 2006-03, Vol.55 (3), p.415-424
issn 0017-5749
1468-3288
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1856073
source MEDLINE; BMJ Journals - NESLi2; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects alanine aminotransferase
alcoholic steatohepatitis
ALT
Animals
Apoptosis
ASH
Biological and medical sciences
Cell Adhesion Molecules - biosynthesis
Choline Deficiency - complications
COX
cytochrome oxidase subunit
Eagle’s minimum essential medium
EMEM
FAS
fatty acid synthase
Fatty Liver - complications
Fatty Liver - metabolism
Fatty Liver - pathology
FBS
fetal bovine serum
Gastroenterology. Liver. Pancreas. Abdomen
Gene Expression Regulation
HSD
hydroxysteroid dehydrogenase
ICAM
intracellular adhesion molecule
kupffer cell
Kupffer Cells - metabolism
lipopolysaccharide
Liver Cirrhosis, Experimental - etiology
Liver Cirrhosis, Experimental - metabolism
Liver Cirrhosis, Experimental - pathology
Liver Fibrosis
Liver. Biliary tract. Portal circulation. Exocrine pancreas
LPS
mAb
Male
MCD
Medical sciences
Methionine - deficiency
methionine and choline deficient
Mice
mice deficient in both TNFR1 and TNFR2
Mice, Knockout
microsomal triglyceride transfer protein
Mitochondria, Liver - physiology
monoclonal antibody
MTTP
Mutation
NASH
non-alcoholic steatohepatitis
Other diseases. Semiology
PHB
prohibitin
Receptors, Tumor Necrosis Factor, Type I - deficiency
Receptors, Tumor Necrosis Factor, Type I - genetics
Receptors, Tumor Necrosis Factor, Type I - physiology
Receptors, Tumor Necrosis Factor, Type II - deficiency
Receptors, Tumor Necrosis Factor, Type II - genetics
Receptors, Tumor Necrosis Factor, Type II - physiology
Reverse Transcriptase Polymerase Chain Reaction - methods
RNA, Messenger - genetics
SCD
Signal Transduction
SREBP
stearoyl-CoA desaturase
sterol regulatory response element binding protein
TGF-β
TIMP
tissue inhibitor of metalloproteinase
tissue inhibitor of metalloproteinase 1
Tissue Inhibitor of Metalloproteinase-1 - biosynthesis
Tissue Inhibitor of Metalloproteinase-1 - genetics
TNF-α
TNFR
TNFRDKO mice
transforming growth factor β
triglyceride
Tumor Necrosis Factor-alpha - biosynthesis
Tumor Necrosis Factor-alpha - physiology
tumour necrosis factor receptor
tumour necrosis factor α
vascular cell adhesion molecule
VCAM
title Tumour necrosis factor α signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tumour%20necrosis%20factor%20%CE%B1%20signalling%20through%20activation%20of%20Kupffer%20cells%20plays%20an%20essential%20role%20in%20liver%20fibrosis%20of%20non-alcoholic%20steatohepatitis%20in%20mice&rft.jtitle=Gut&rft.au=Tomita,%20K&rft.date=2006-03-01&rft.volume=55&rft.issue=3&rft.spage=415&rft.epage=424&rft.pages=415-424&rft.issn=0017-5749&rft.eissn=1468-3288&rft.coden=GUTTAK&rft_id=info:doi/10.1136/gut.2005.071118&rft_dat=%3Cproquest_pubme%3E67652378%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67652378&rft_id=info:pmid/16174657&rfr_iscdi=true