Tumour necrosis factor α signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice
Background: While tumour necrosis factor α (TNF-α) appears to be associated with the development of non-alcoholic steatohepatitis (NASH), its precise role in the pathogenesis of NASH is not well understood. Methods: Male mice deficient in both TNF receptors 1 (TNFR1) and 2 (TNFR2) (TNFRDKO mice) and...
Gespeichert in:
Veröffentlicht in: | Gut 2006-03, Vol.55 (3), p.415-424 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 424 |
---|---|
container_issue | 3 |
container_start_page | 415 |
container_title | Gut |
container_volume | 55 |
creator | Tomita, K Tamiya, G Ando, S Ohsumi, K Chiyo, T Mizutani, A Kitamura, N Toda, K Kaneko, T Horie, Y Han, J-Y Kato, S Shimoda, M Oike, Y Tomizawa, M Makino, S Ohkura, T Saito, H Kumagai, N Nagata, H Ishii, H Hibi, T |
description | Background: While tumour necrosis factor α (TNF-α) appears to be associated with the development of non-alcoholic steatohepatitis (NASH), its precise role in the pathogenesis of NASH is not well understood. Methods: Male mice deficient in both TNF receptors 1 (TNFR1) and 2 (TNFR2) (TNFRDKO mice) and wild-type mice were fed a methionine and choline deficient (MCD) diet or a control diet for eight weeks, maintaining isoenergetic intake. Results: MCD dietary feeding of TNFRDKO mice for eight weeks resulted in attenuated liver steatosis and fibrosis compared with control wild-type mice. In the liver, the number of activated hepatic Kupffer cells recruited was significantly decreased in TNFRDKO mice after MCD dietary feeding. In addition, hepatic induction of TNF-α, vascular cell adhesion molecule 1, and intracellular adhesion molecule 1 was significantly suppressed in TNFRDKO mice. While in control animals MCD dietary feeding dramatically increased mRNA expression of tissue inhibitor of metalloproteinase 1 (TIMP-1) in both whole liver and hepatic stellate cells, concomitant with enhanced activation of hepatic stellate cells, both factors were significantly lower in TNFRDKO mice. In primary cultures, TNF-α administration enhanced TIMP-1 mRNA expression in activated hepatic stellate cells and suppressed apoptotic induction in activated hepatic stellate cells. Inhibition of TNF induced TIMP-1 upregulation by TIMP-1 specific siRNA reversed the apoptotic suppression seen in hepatic stellate cells. Conclusions: Enhancement of the TNF-α/TNFR mediated signalling pathway via activation of Kupffer cells in an autocrine or paracrine manner may be critically involved in the pathogenesis of liver fibrosis in this NASH animal model. |
doi_str_mv | 10.1136/gut.2005.071118 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1856073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67652378</sourcerecordid><originalsourceid>FETCH-LOGICAL-b367t-4658d0a856460003115d7b809971ecdc9a747dfc50043444c4dc4b3b750014f23</originalsourceid><addsrcrecordid>eNpVksFu1DAURSMEotPCmh3yBhaVMtixYzsbpDKigKgAiYK6sxzHybg4drCdEf0WvoIf4ZvwKEMLK0t-593r93yL4gmCa4QwfTHMaV1BWK8hQwjxe8UKEcpLXHF-v1hBiFhZM9IcFccxXkMIOW_Qw-IIUcQIrdmq-Hk5j34OwGkVfDQR9FIlH8DvXyCawUlrjRtA2gY_D1uQa2Ynk_EO-B68n6e-1wEobW0Ek5U3EUgHdIzaJSMtCN5qYBywZpex3rSLRW513pXSKr_11igQk5bJb_WUpVMGcstolH5UPOiljfrx4Twpvpy_vty8LS8-vnm3ObsoW0xZKvMgvIOS15TQPCJGqO5Yy2HTMKRVpxrJCOt6VUNIMCFEkU6RFrcsXyDSV_ikeLnoTnM76k7l1wdpxRTMKMON8NKI_yvObMXgdwJlT8hwFnh-EAj--6xjEqOJ-61Ip_0cBWW0rjDjGXz6r9Otxd__yMCzAyCjkrYP0ikT7zhGeJ65yVy5cCbv7sdtXYZv2QyzWnz4uhFX57R6Ra8-ic-ZP134dry-U4NiHyKRQyT2IRJLiPAflGG7Kw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67652378</pqid></control><display><type>article</type><title>Tumour necrosis factor α signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice</title><source>MEDLINE</source><source>BMJ Journals - NESLi2</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Tomita, K ; Tamiya, G ; Ando, S ; Ohsumi, K ; Chiyo, T ; Mizutani, A ; Kitamura, N ; Toda, K ; Kaneko, T ; Horie, Y ; Han, J-Y ; Kato, S ; Shimoda, M ; Oike, Y ; Tomizawa, M ; Makino, S ; Ohkura, T ; Saito, H ; Kumagai, N ; Nagata, H ; Ishii, H ; Hibi, T</creator><creatorcontrib>Tomita, K ; Tamiya, G ; Ando, S ; Ohsumi, K ; Chiyo, T ; Mizutani, A ; Kitamura, N ; Toda, K ; Kaneko, T ; Horie, Y ; Han, J-Y ; Kato, S ; Shimoda, M ; Oike, Y ; Tomizawa, M ; Makino, S ; Ohkura, T ; Saito, H ; Kumagai, N ; Nagata, H ; Ishii, H ; Hibi, T</creatorcontrib><description>Background: While tumour necrosis factor α (TNF-α) appears to be associated with the development of non-alcoholic steatohepatitis (NASH), its precise role in the pathogenesis of NASH is not well understood. Methods: Male mice deficient in both TNF receptors 1 (TNFR1) and 2 (TNFR2) (TNFRDKO mice) and wild-type mice were fed a methionine and choline deficient (MCD) diet or a control diet for eight weeks, maintaining isoenergetic intake. Results: MCD dietary feeding of TNFRDKO mice for eight weeks resulted in attenuated liver steatosis and fibrosis compared with control wild-type mice. In the liver, the number of activated hepatic Kupffer cells recruited was significantly decreased in TNFRDKO mice after MCD dietary feeding. In addition, hepatic induction of TNF-α, vascular cell adhesion molecule 1, and intracellular adhesion molecule 1 was significantly suppressed in TNFRDKO mice. While in control animals MCD dietary feeding dramatically increased mRNA expression of tissue inhibitor of metalloproteinase 1 (TIMP-1) in both whole liver and hepatic stellate cells, concomitant with enhanced activation of hepatic stellate cells, both factors were significantly lower in TNFRDKO mice. In primary cultures, TNF-α administration enhanced TIMP-1 mRNA expression in activated hepatic stellate cells and suppressed apoptotic induction in activated hepatic stellate cells. Inhibition of TNF induced TIMP-1 upregulation by TIMP-1 specific siRNA reversed the apoptotic suppression seen in hepatic stellate cells. Conclusions: Enhancement of the TNF-α/TNFR mediated signalling pathway via activation of Kupffer cells in an autocrine or paracrine manner may be critically involved in the pathogenesis of liver fibrosis in this NASH animal model.</description><identifier>ISSN: 0017-5749</identifier><identifier>EISSN: 1468-3288</identifier><identifier>DOI: 10.1136/gut.2005.071118</identifier><identifier>PMID: 16174657</identifier><identifier>CODEN: GUTTAK</identifier><language>eng</language><publisher>London: BMJ Publishing Group Ltd and British Society of Gastroenterology</publisher><subject>alanine aminotransferase ; alcoholic steatohepatitis ; ALT ; Animals ; Apoptosis ; ASH ; Biological and medical sciences ; Cell Adhesion Molecules - biosynthesis ; Choline Deficiency - complications ; COX ; cytochrome oxidase subunit ; Eagle’s minimum essential medium ; EMEM ; FAS ; fatty acid synthase ; Fatty Liver - complications ; Fatty Liver - metabolism ; Fatty Liver - pathology ; FBS ; fetal bovine serum ; Gastroenterology. Liver. Pancreas. Abdomen ; Gene Expression Regulation ; HSD ; hydroxysteroid dehydrogenase ; ICAM ; intracellular adhesion molecule ; kupffer cell ; Kupffer Cells - metabolism ; lipopolysaccharide ; Liver Cirrhosis, Experimental - etiology ; Liver Cirrhosis, Experimental - metabolism ; Liver Cirrhosis, Experimental - pathology ; Liver Fibrosis ; Liver. Biliary tract. Portal circulation. Exocrine pancreas ; LPS ; mAb ; Male ; MCD ; Medical sciences ; Methionine - deficiency ; methionine and choline deficient ; Mice ; mice deficient in both TNFR1 and TNFR2 ; Mice, Knockout ; microsomal triglyceride transfer protein ; Mitochondria, Liver - physiology ; monoclonal antibody ; MTTP ; Mutation ; NASH ; non-alcoholic steatohepatitis ; Other diseases. Semiology ; PHB ; prohibitin ; Receptors, Tumor Necrosis Factor, Type I - deficiency ; Receptors, Tumor Necrosis Factor, Type I - genetics ; Receptors, Tumor Necrosis Factor, Type I - physiology ; Receptors, Tumor Necrosis Factor, Type II - deficiency ; Receptors, Tumor Necrosis Factor, Type II - genetics ; Receptors, Tumor Necrosis Factor, Type II - physiology ; Reverse Transcriptase Polymerase Chain Reaction - methods ; RNA, Messenger - genetics ; SCD ; Signal Transduction ; SREBP ; stearoyl-CoA desaturase ; sterol regulatory response element binding protein ; TGF-β ; TIMP ; tissue inhibitor of metalloproteinase ; tissue inhibitor of metalloproteinase 1 ; Tissue Inhibitor of Metalloproteinase-1 - biosynthesis ; Tissue Inhibitor of Metalloproteinase-1 - genetics ; TNF-α ; TNFR ; TNFRDKO mice ; transforming growth factor β ; triglyceride ; Tumor Necrosis Factor-alpha - biosynthesis ; Tumor Necrosis Factor-alpha - physiology ; tumour necrosis factor receptor ; tumour necrosis factor α ; vascular cell adhesion molecule ; VCAM</subject><ispartof>Gut, 2006-03, Vol.55 (3), p.415-424</ispartof><rights>Copyright 2006 by Gut</rights><rights>2006 INIST-CNRS</rights><rights>Copyright © 2006 BMJ Publishing Group & British Society of Gastroenterology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://gut.bmj.com/content/55/3/415.full.pdf$$EPDF$$P50$$Gbmj$$H</linktopdf><linktohtml>$$Uhttp://gut.bmj.com/content/55/3/415.full$$EHTML$$P50$$Gbmj$$H</linktohtml><link.rule.ids>114,115,230,314,723,776,780,881,23550,27901,27902,53766,53768,77343,77374</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17483679$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16174657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tomita, K</creatorcontrib><creatorcontrib>Tamiya, G</creatorcontrib><creatorcontrib>Ando, S</creatorcontrib><creatorcontrib>Ohsumi, K</creatorcontrib><creatorcontrib>Chiyo, T</creatorcontrib><creatorcontrib>Mizutani, A</creatorcontrib><creatorcontrib>Kitamura, N</creatorcontrib><creatorcontrib>Toda, K</creatorcontrib><creatorcontrib>Kaneko, T</creatorcontrib><creatorcontrib>Horie, Y</creatorcontrib><creatorcontrib>Han, J-Y</creatorcontrib><creatorcontrib>Kato, S</creatorcontrib><creatorcontrib>Shimoda, M</creatorcontrib><creatorcontrib>Oike, Y</creatorcontrib><creatorcontrib>Tomizawa, M</creatorcontrib><creatorcontrib>Makino, S</creatorcontrib><creatorcontrib>Ohkura, T</creatorcontrib><creatorcontrib>Saito, H</creatorcontrib><creatorcontrib>Kumagai, N</creatorcontrib><creatorcontrib>Nagata, H</creatorcontrib><creatorcontrib>Ishii, H</creatorcontrib><creatorcontrib>Hibi, T</creatorcontrib><title>Tumour necrosis factor α signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice</title><title>Gut</title><addtitle>Gut</addtitle><description>Background: While tumour necrosis factor α (TNF-α) appears to be associated with the development of non-alcoholic steatohepatitis (NASH), its precise role in the pathogenesis of NASH is not well understood. Methods: Male mice deficient in both TNF receptors 1 (TNFR1) and 2 (TNFR2) (TNFRDKO mice) and wild-type mice were fed a methionine and choline deficient (MCD) diet or a control diet for eight weeks, maintaining isoenergetic intake. Results: MCD dietary feeding of TNFRDKO mice for eight weeks resulted in attenuated liver steatosis and fibrosis compared with control wild-type mice. In the liver, the number of activated hepatic Kupffer cells recruited was significantly decreased in TNFRDKO mice after MCD dietary feeding. In addition, hepatic induction of TNF-α, vascular cell adhesion molecule 1, and intracellular adhesion molecule 1 was significantly suppressed in TNFRDKO mice. While in control animals MCD dietary feeding dramatically increased mRNA expression of tissue inhibitor of metalloproteinase 1 (TIMP-1) in both whole liver and hepatic stellate cells, concomitant with enhanced activation of hepatic stellate cells, both factors were significantly lower in TNFRDKO mice. In primary cultures, TNF-α administration enhanced TIMP-1 mRNA expression in activated hepatic stellate cells and suppressed apoptotic induction in activated hepatic stellate cells. Inhibition of TNF induced TIMP-1 upregulation by TIMP-1 specific siRNA reversed the apoptotic suppression seen in hepatic stellate cells. Conclusions: Enhancement of the TNF-α/TNFR mediated signalling pathway via activation of Kupffer cells in an autocrine or paracrine manner may be critically involved in the pathogenesis of liver fibrosis in this NASH animal model.</description><subject>alanine aminotransferase</subject><subject>alcoholic steatohepatitis</subject><subject>ALT</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>ASH</subject><subject>Biological and medical sciences</subject><subject>Cell Adhesion Molecules - biosynthesis</subject><subject>Choline Deficiency - complications</subject><subject>COX</subject><subject>cytochrome oxidase subunit</subject><subject>Eagle’s minimum essential medium</subject><subject>EMEM</subject><subject>FAS</subject><subject>fatty acid synthase</subject><subject>Fatty Liver - complications</subject><subject>Fatty Liver - metabolism</subject><subject>Fatty Liver - pathology</subject><subject>FBS</subject><subject>fetal bovine serum</subject><subject>Gastroenterology. Liver. Pancreas. Abdomen</subject><subject>Gene Expression Regulation</subject><subject>HSD</subject><subject>hydroxysteroid dehydrogenase</subject><subject>ICAM</subject><subject>intracellular adhesion molecule</subject><subject>kupffer cell</subject><subject>Kupffer Cells - metabolism</subject><subject>lipopolysaccharide</subject><subject>Liver Cirrhosis, Experimental - etiology</subject><subject>Liver Cirrhosis, Experimental - metabolism</subject><subject>Liver Cirrhosis, Experimental - pathology</subject><subject>Liver Fibrosis</subject><subject>Liver. Biliary tract. Portal circulation. Exocrine pancreas</subject><subject>LPS</subject><subject>mAb</subject><subject>Male</subject><subject>MCD</subject><subject>Medical sciences</subject><subject>Methionine - deficiency</subject><subject>methionine and choline deficient</subject><subject>Mice</subject><subject>mice deficient in both TNFR1 and TNFR2</subject><subject>Mice, Knockout</subject><subject>microsomal triglyceride transfer protein</subject><subject>Mitochondria, Liver - physiology</subject><subject>monoclonal antibody</subject><subject>MTTP</subject><subject>Mutation</subject><subject>NASH</subject><subject>non-alcoholic steatohepatitis</subject><subject>Other diseases. Semiology</subject><subject>PHB</subject><subject>prohibitin</subject><subject>Receptors, Tumor Necrosis Factor, Type I - deficiency</subject><subject>Receptors, Tumor Necrosis Factor, Type I - genetics</subject><subject>Receptors, Tumor Necrosis Factor, Type I - physiology</subject><subject>Receptors, Tumor Necrosis Factor, Type II - deficiency</subject><subject>Receptors, Tumor Necrosis Factor, Type II - genetics</subject><subject>Receptors, Tumor Necrosis Factor, Type II - physiology</subject><subject>Reverse Transcriptase Polymerase Chain Reaction - methods</subject><subject>RNA, Messenger - genetics</subject><subject>SCD</subject><subject>Signal Transduction</subject><subject>SREBP</subject><subject>stearoyl-CoA desaturase</subject><subject>sterol regulatory response element binding protein</subject><subject>TGF-β</subject><subject>TIMP</subject><subject>tissue inhibitor of metalloproteinase</subject><subject>tissue inhibitor of metalloproteinase 1</subject><subject>Tissue Inhibitor of Metalloproteinase-1 - biosynthesis</subject><subject>Tissue Inhibitor of Metalloproteinase-1 - genetics</subject><subject>TNF-α</subject><subject>TNFR</subject><subject>TNFRDKO mice</subject><subject>transforming growth factor β</subject><subject>triglyceride</subject><subject>Tumor Necrosis Factor-alpha - biosynthesis</subject><subject>Tumor Necrosis Factor-alpha - physiology</subject><subject>tumour necrosis factor receptor</subject><subject>tumour necrosis factor α</subject><subject>vascular cell adhesion molecule</subject><subject>VCAM</subject><issn>0017-5749</issn><issn>1468-3288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVksFu1DAURSMEotPCmh3yBhaVMtixYzsbpDKigKgAiYK6sxzHybg4drCdEf0WvoIf4ZvwKEMLK0t-593r93yL4gmCa4QwfTHMaV1BWK8hQwjxe8UKEcpLXHF-v1hBiFhZM9IcFccxXkMIOW_Qw-IIUcQIrdmq-Hk5j34OwGkVfDQR9FIlH8DvXyCawUlrjRtA2gY_D1uQa2Ynk_EO-B68n6e-1wEobW0Ek5U3EUgHdIzaJSMtCN5qYBywZpex3rSLRW513pXSKr_11igQk5bJb_WUpVMGcstolH5UPOiljfrx4Twpvpy_vty8LS8-vnm3ObsoW0xZKvMgvIOS15TQPCJGqO5Yy2HTMKRVpxrJCOt6VUNIMCFEkU6RFrcsXyDSV_ikeLnoTnM76k7l1wdpxRTMKMON8NKI_yvObMXgdwJlT8hwFnh-EAj--6xjEqOJ-61Ip_0cBWW0rjDjGXz6r9Otxd__yMCzAyCjkrYP0ikT7zhGeJ65yVy5cCbv7sdtXYZv2QyzWnz4uhFX57R6Ra8-ic-ZP134dry-U4NiHyKRQyT2IRJLiPAflGG7Kw</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Tomita, K</creator><creator>Tamiya, G</creator><creator>Ando, S</creator><creator>Ohsumi, K</creator><creator>Chiyo, T</creator><creator>Mizutani, A</creator><creator>Kitamura, N</creator><creator>Toda, K</creator><creator>Kaneko, T</creator><creator>Horie, Y</creator><creator>Han, J-Y</creator><creator>Kato, S</creator><creator>Shimoda, M</creator><creator>Oike, Y</creator><creator>Tomizawa, M</creator><creator>Makino, S</creator><creator>Ohkura, T</creator><creator>Saito, H</creator><creator>Kumagai, N</creator><creator>Nagata, H</creator><creator>Ishii, H</creator><creator>Hibi, T</creator><general>BMJ Publishing Group Ltd and British Society of Gastroenterology</general><general>BMJ</general><general>BMJ Group</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060301</creationdate><title>Tumour necrosis factor α signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice</title><author>Tomita, K ; Tamiya, G ; Ando, S ; Ohsumi, K ; Chiyo, T ; Mizutani, A ; Kitamura, N ; Toda, K ; Kaneko, T ; Horie, Y ; Han, J-Y ; Kato, S ; Shimoda, M ; Oike, Y ; Tomizawa, M ; Makino, S ; Ohkura, T ; Saito, H ; Kumagai, N ; Nagata, H ; Ishii, H ; Hibi, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b367t-4658d0a856460003115d7b809971ecdc9a747dfc50043444c4dc4b3b750014f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>alanine aminotransferase</topic><topic>alcoholic steatohepatitis</topic><topic>ALT</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>ASH</topic><topic>Biological and medical sciences</topic><topic>Cell Adhesion Molecules - biosynthesis</topic><topic>Choline Deficiency - complications</topic><topic>COX</topic><topic>cytochrome oxidase subunit</topic><topic>Eagle’s minimum essential medium</topic><topic>EMEM</topic><topic>FAS</topic><topic>fatty acid synthase</topic><topic>Fatty Liver - complications</topic><topic>Fatty Liver - metabolism</topic><topic>Fatty Liver - pathology</topic><topic>FBS</topic><topic>fetal bovine serum</topic><topic>Gastroenterology. Liver. Pancreas. Abdomen</topic><topic>Gene Expression Regulation</topic><topic>HSD</topic><topic>hydroxysteroid dehydrogenase</topic><topic>ICAM</topic><topic>intracellular adhesion molecule</topic><topic>kupffer cell</topic><topic>Kupffer Cells - metabolism</topic><topic>lipopolysaccharide</topic><topic>Liver Cirrhosis, Experimental - etiology</topic><topic>Liver Cirrhosis, Experimental - metabolism</topic><topic>Liver Cirrhosis, Experimental - pathology</topic><topic>Liver Fibrosis</topic><topic>Liver. Biliary tract. Portal circulation. Exocrine pancreas</topic><topic>LPS</topic><topic>mAb</topic><topic>Male</topic><topic>MCD</topic><topic>Medical sciences</topic><topic>Methionine - deficiency</topic><topic>methionine and choline deficient</topic><topic>Mice</topic><topic>mice deficient in both TNFR1 and TNFR2</topic><topic>Mice, Knockout</topic><topic>microsomal triglyceride transfer protein</topic><topic>Mitochondria, Liver - physiology</topic><topic>monoclonal antibody</topic><topic>MTTP</topic><topic>Mutation</topic><topic>NASH</topic><topic>non-alcoholic steatohepatitis</topic><topic>Other diseases. Semiology</topic><topic>PHB</topic><topic>prohibitin</topic><topic>Receptors, Tumor Necrosis Factor, Type I - deficiency</topic><topic>Receptors, Tumor Necrosis Factor, Type I - genetics</topic><topic>Receptors, Tumor Necrosis Factor, Type I - physiology</topic><topic>Receptors, Tumor Necrosis Factor, Type II - deficiency</topic><topic>Receptors, Tumor Necrosis Factor, Type II - genetics</topic><topic>Receptors, Tumor Necrosis Factor, Type II - physiology</topic><topic>Reverse Transcriptase Polymerase Chain Reaction - methods</topic><topic>RNA, Messenger - genetics</topic><topic>SCD</topic><topic>Signal Transduction</topic><topic>SREBP</topic><topic>stearoyl-CoA desaturase</topic><topic>sterol regulatory response element binding protein</topic><topic>TGF-β</topic><topic>TIMP</topic><topic>tissue inhibitor of metalloproteinase</topic><topic>tissue inhibitor of metalloproteinase 1</topic><topic>Tissue Inhibitor of Metalloproteinase-1 - biosynthesis</topic><topic>Tissue Inhibitor of Metalloproteinase-1 - genetics</topic><topic>TNF-α</topic><topic>TNFR</topic><topic>TNFRDKO mice</topic><topic>transforming growth factor β</topic><topic>triglyceride</topic><topic>Tumor Necrosis Factor-alpha - biosynthesis</topic><topic>Tumor Necrosis Factor-alpha - physiology</topic><topic>tumour necrosis factor receptor</topic><topic>tumour necrosis factor α</topic><topic>vascular cell adhesion molecule</topic><topic>VCAM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tomita, K</creatorcontrib><creatorcontrib>Tamiya, G</creatorcontrib><creatorcontrib>Ando, S</creatorcontrib><creatorcontrib>Ohsumi, K</creatorcontrib><creatorcontrib>Chiyo, T</creatorcontrib><creatorcontrib>Mizutani, A</creatorcontrib><creatorcontrib>Kitamura, N</creatorcontrib><creatorcontrib>Toda, K</creatorcontrib><creatorcontrib>Kaneko, T</creatorcontrib><creatorcontrib>Horie, Y</creatorcontrib><creatorcontrib>Han, J-Y</creatorcontrib><creatorcontrib>Kato, S</creatorcontrib><creatorcontrib>Shimoda, M</creatorcontrib><creatorcontrib>Oike, Y</creatorcontrib><creatorcontrib>Tomizawa, M</creatorcontrib><creatorcontrib>Makino, S</creatorcontrib><creatorcontrib>Ohkura, T</creatorcontrib><creatorcontrib>Saito, H</creatorcontrib><creatorcontrib>Kumagai, N</creatorcontrib><creatorcontrib>Nagata, H</creatorcontrib><creatorcontrib>Ishii, H</creatorcontrib><creatorcontrib>Hibi, T</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gut</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tomita, K</au><au>Tamiya, G</au><au>Ando, S</au><au>Ohsumi, K</au><au>Chiyo, T</au><au>Mizutani, A</au><au>Kitamura, N</au><au>Toda, K</au><au>Kaneko, T</au><au>Horie, Y</au><au>Han, J-Y</au><au>Kato, S</au><au>Shimoda, M</au><au>Oike, Y</au><au>Tomizawa, M</au><au>Makino, S</au><au>Ohkura, T</au><au>Saito, H</au><au>Kumagai, N</au><au>Nagata, H</au><au>Ishii, H</au><au>Hibi, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tumour necrosis factor α signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice</atitle><jtitle>Gut</jtitle><addtitle>Gut</addtitle><date>2006-03-01</date><risdate>2006</risdate><volume>55</volume><issue>3</issue><spage>415</spage><epage>424</epage><pages>415-424</pages><issn>0017-5749</issn><eissn>1468-3288</eissn><coden>GUTTAK</coden><abstract>Background: While tumour necrosis factor α (TNF-α) appears to be associated with the development of non-alcoholic steatohepatitis (NASH), its precise role in the pathogenesis of NASH is not well understood. Methods: Male mice deficient in both TNF receptors 1 (TNFR1) and 2 (TNFR2) (TNFRDKO mice) and wild-type mice were fed a methionine and choline deficient (MCD) diet or a control diet for eight weeks, maintaining isoenergetic intake. Results: MCD dietary feeding of TNFRDKO mice for eight weeks resulted in attenuated liver steatosis and fibrosis compared with control wild-type mice. In the liver, the number of activated hepatic Kupffer cells recruited was significantly decreased in TNFRDKO mice after MCD dietary feeding. In addition, hepatic induction of TNF-α, vascular cell adhesion molecule 1, and intracellular adhesion molecule 1 was significantly suppressed in TNFRDKO mice. While in control animals MCD dietary feeding dramatically increased mRNA expression of tissue inhibitor of metalloproteinase 1 (TIMP-1) in both whole liver and hepatic stellate cells, concomitant with enhanced activation of hepatic stellate cells, both factors were significantly lower in TNFRDKO mice. In primary cultures, TNF-α administration enhanced TIMP-1 mRNA expression in activated hepatic stellate cells and suppressed apoptotic induction in activated hepatic stellate cells. Inhibition of TNF induced TIMP-1 upregulation by TIMP-1 specific siRNA reversed the apoptotic suppression seen in hepatic stellate cells. Conclusions: Enhancement of the TNF-α/TNFR mediated signalling pathway via activation of Kupffer cells in an autocrine or paracrine manner may be critically involved in the pathogenesis of liver fibrosis in this NASH animal model.</abstract><cop>London</cop><pub>BMJ Publishing Group Ltd and British Society of Gastroenterology</pub><pmid>16174657</pmid><doi>10.1136/gut.2005.071118</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-5749 |
ispartof | Gut, 2006-03, Vol.55 (3), p.415-424 |
issn | 0017-5749 1468-3288 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1856073 |
source | MEDLINE; BMJ Journals - NESLi2; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | alanine aminotransferase alcoholic steatohepatitis ALT Animals Apoptosis ASH Biological and medical sciences Cell Adhesion Molecules - biosynthesis Choline Deficiency - complications COX cytochrome oxidase subunit Eagle’s minimum essential medium EMEM FAS fatty acid synthase Fatty Liver - complications Fatty Liver - metabolism Fatty Liver - pathology FBS fetal bovine serum Gastroenterology. Liver. Pancreas. Abdomen Gene Expression Regulation HSD hydroxysteroid dehydrogenase ICAM intracellular adhesion molecule kupffer cell Kupffer Cells - metabolism lipopolysaccharide Liver Cirrhosis, Experimental - etiology Liver Cirrhosis, Experimental - metabolism Liver Cirrhosis, Experimental - pathology Liver Fibrosis Liver. Biliary tract. Portal circulation. Exocrine pancreas LPS mAb Male MCD Medical sciences Methionine - deficiency methionine and choline deficient Mice mice deficient in both TNFR1 and TNFR2 Mice, Knockout microsomal triglyceride transfer protein Mitochondria, Liver - physiology monoclonal antibody MTTP Mutation NASH non-alcoholic steatohepatitis Other diseases. Semiology PHB prohibitin Receptors, Tumor Necrosis Factor, Type I - deficiency Receptors, Tumor Necrosis Factor, Type I - genetics Receptors, Tumor Necrosis Factor, Type I - physiology Receptors, Tumor Necrosis Factor, Type II - deficiency Receptors, Tumor Necrosis Factor, Type II - genetics Receptors, Tumor Necrosis Factor, Type II - physiology Reverse Transcriptase Polymerase Chain Reaction - methods RNA, Messenger - genetics SCD Signal Transduction SREBP stearoyl-CoA desaturase sterol regulatory response element binding protein TGF-β TIMP tissue inhibitor of metalloproteinase tissue inhibitor of metalloproteinase 1 Tissue Inhibitor of Metalloproteinase-1 - biosynthesis Tissue Inhibitor of Metalloproteinase-1 - genetics TNF-α TNFR TNFRDKO mice transforming growth factor β triglyceride Tumor Necrosis Factor-alpha - biosynthesis Tumor Necrosis Factor-alpha - physiology tumour necrosis factor receptor tumour necrosis factor α vascular cell adhesion molecule VCAM |
title | Tumour necrosis factor α signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tumour%20necrosis%20factor%20%CE%B1%20signalling%20through%20activation%20of%20Kupffer%20cells%20plays%20an%20essential%20role%20in%20liver%20fibrosis%20of%20non-alcoholic%20steatohepatitis%20in%20mice&rft.jtitle=Gut&rft.au=Tomita,%20K&rft.date=2006-03-01&rft.volume=55&rft.issue=3&rft.spage=415&rft.epage=424&rft.pages=415-424&rft.issn=0017-5749&rft.eissn=1468-3288&rft.coden=GUTTAK&rft_id=info:doi/10.1136/gut.2005.071118&rft_dat=%3Cproquest_pubme%3E67652378%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67652378&rft_id=info:pmid/16174657&rfr_iscdi=true |